Subcritical Hamilton-Jacobi fractional equation in R N

Solvability of Cauchy's problem in R N for fractional Hamilton-Jacobi equation (1.1) with subcritical nonlinearity is studied here both in the classical Sobolev spaces and in the locally uniform spaces. The first part of the paper is devoted to the global in time solvability of subcritical equa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2015-08, Vol.38 (12), p.2547
Hauptverfasser: Dlotko, Tomasz, Kania, Maria B
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 2547
container_title Mathematical methods in the applied sciences
container_volume 38
creator Dlotko, Tomasz
Kania, Maria B
description Solvability of Cauchy's problem in R N for fractional Hamilton-Jacobi equation (1.1) with subcritical nonlinearity is studied here both in the classical Sobolev spaces and in the locally uniform spaces. The first part of the paper is devoted to the global in time solvability of subcritical equation (1.1) in locally uniform phase space, a generalization of the standard Sobolev spaces. Subcritical growth of the nonlinear term with respect to the gradient is considered. We prove next the global in time solvability in classical Sobolev spaces, in Hilbert case. Regularization effect is used there to guarantee global in time extendibility of the local solution. Copyright © 2014 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/mma.3241
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1696054939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3742643611</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-fa3fc680cdf192afef8e3458aa1304da27c0ff630cd6ed472feed37904e2170f3</originalsourceid><addsrcrecordid>eNotjttKAzEURYMoOFbBTxjwOfWcJE0mj1LUKkXBy3M5zeRAylzamcz_O6JPe8NebJYQtwhLBFD3bUtLrQyeiQLBe4nG2XNRADqQRqG5FFfjeACAClEVwn5O-zCknAI15Yba1OS-k68U-n0qeaCQU9_NUzxN9FvL1JUf5du1uGBqxnjznwvx_fT4td7I7fvzy_phK4-IOksmzcFWEGpGr4gjV1GbVUWEGkxNygVgtnoGbKyNUxxjrZ0HE9UszHoh7v5-j0N_muKYd4d-GmahcYfWW1gZr73-AVhURq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696054939</pqid></control><display><type>article</type><title>Subcritical Hamilton-Jacobi fractional equation in R N</title><source>Access via Wiley Online Library</source><creator>Dlotko, Tomasz ; Kania, Maria B</creator><creatorcontrib>Dlotko, Tomasz ; Kania, Maria B</creatorcontrib><description>Solvability of Cauchy's problem in R N for fractional Hamilton-Jacobi equation (1.1) with subcritical nonlinearity is studied here both in the classical Sobolev spaces and in the locally uniform spaces. The first part of the paper is devoted to the global in time solvability of subcritical equation (1.1) in locally uniform phase space, a generalization of the standard Sobolev spaces. Subcritical growth of the nonlinear term with respect to the gradient is considered. We prove next the global in time solvability in classical Sobolev spaces, in Hilbert case. Regularization effect is used there to guarantee global in time extendibility of the local solution. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.3241</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><ispartof>Mathematical methods in the applied sciences, 2015-08, Vol.38 (12), p.2547</ispartof><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Dlotko, Tomasz</creatorcontrib><creatorcontrib>Kania, Maria B</creatorcontrib><title>Subcritical Hamilton-Jacobi fractional equation in R N</title><title>Mathematical methods in the applied sciences</title><description>Solvability of Cauchy's problem in R N for fractional Hamilton-Jacobi equation (1.1) with subcritical nonlinearity is studied here both in the classical Sobolev spaces and in the locally uniform spaces. The first part of the paper is devoted to the global in time solvability of subcritical equation (1.1) in locally uniform phase space, a generalization of the standard Sobolev spaces. Subcritical growth of the nonlinear term with respect to the gradient is considered. We prove next the global in time solvability in classical Sobolev spaces, in Hilbert case. Regularization effect is used there to guarantee global in time extendibility of the local solution. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotjttKAzEURYMoOFbBTxjwOfWcJE0mj1LUKkXBy3M5zeRAylzamcz_O6JPe8NebJYQtwhLBFD3bUtLrQyeiQLBe4nG2XNRADqQRqG5FFfjeACAClEVwn5O-zCknAI15Yba1OS-k68U-n0qeaCQU9_NUzxN9FvL1JUf5du1uGBqxnjznwvx_fT4td7I7fvzy_phK4-IOksmzcFWEGpGr4gjV1GbVUWEGkxNygVgtnoGbKyNUxxjrZ0HE9UszHoh7v5-j0N_muKYd4d-GmahcYfWW1gZr73-AVhURq4</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Dlotko, Tomasz</creator><creator>Kania, Maria B</creator><general>Wiley Subscription Services, Inc</general><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20150801</creationdate><title>Subcritical Hamilton-Jacobi fractional equation in R N</title><author>Dlotko, Tomasz ; Kania, Maria B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-fa3fc680cdf192afef8e3458aa1304da27c0ff630cd6ed472feed37904e2170f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dlotko, Tomasz</creatorcontrib><creatorcontrib>Kania, Maria B</creatorcontrib><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dlotko, Tomasz</au><au>Kania, Maria B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subcritical Hamilton-Jacobi fractional equation in R N</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>38</volume><issue>12</issue><spage>2547</spage><pages>2547-</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>Solvability of Cauchy's problem in R N for fractional Hamilton-Jacobi equation (1.1) with subcritical nonlinearity is studied here both in the classical Sobolev spaces and in the locally uniform spaces. The first part of the paper is devoted to the global in time solvability of subcritical equation (1.1) in locally uniform phase space, a generalization of the standard Sobolev spaces. Subcritical growth of the nonlinear term with respect to the gradient is considered. We prove next the global in time solvability in classical Sobolev spaces, in Hilbert case. Regularization effect is used there to guarantee global in time extendibility of the local solution. Copyright © 2014 John Wiley &amp; Sons, Ltd.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.3241</doi></addata></record>
fulltext fulltext
identifier ISSN: 0170-4214
ispartof Mathematical methods in the applied sciences, 2015-08, Vol.38 (12), p.2547
issn 0170-4214
1099-1476
language eng
recordid cdi_proquest_journals_1696054939
source Access via Wiley Online Library
title Subcritical Hamilton-Jacobi fractional equation in R N
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subcritical%20Hamilton-Jacobi%20fractional%20equation%20in%20R%20N&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Dlotko,%20Tomasz&rft.date=2015-08-01&rft.volume=38&rft.issue=12&rft.spage=2547&rft.pages=2547-&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.3241&rft_dat=%3Cproquest%3E3742643611%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696054939&rft_id=info:pmid/&rfr_iscdi=true