Subcritical Hamilton-Jacobi fractional equation in R N
Solvability of Cauchy's problem in R N for fractional Hamilton-Jacobi equation (1.1) with subcritical nonlinearity is studied here both in the classical Sobolev spaces and in the locally uniform spaces. The first part of the paper is devoted to the global in time solvability of subcritical equa...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2015-08, Vol.38 (12), p.2547 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | 2547 |
container_title | Mathematical methods in the applied sciences |
container_volume | 38 |
creator | Dlotko, Tomasz Kania, Maria B |
description | Solvability of Cauchy's problem in R N for fractional Hamilton-Jacobi equation (1.1) with subcritical nonlinearity is studied here both in the classical Sobolev spaces and in the locally uniform spaces. The first part of the paper is devoted to the global in time solvability of subcritical equation (1.1) in locally uniform phase space, a generalization of the standard Sobolev spaces. Subcritical growth of the nonlinear term with respect to the gradient is considered. We prove next the global in time solvability in classical Sobolev spaces, in Hilbert case. Regularization effect is used there to guarantee global in time extendibility of the local solution. Copyright © 2014 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/mma.3241 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1696054939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3742643611</sourcerecordid><originalsourceid>FETCH-LOGICAL-p113t-fa3fc680cdf192afef8e3458aa1304da27c0ff630cd6ed472feed37904e2170f3</originalsourceid><addsrcrecordid>eNotjttKAzEURYMoOFbBTxjwOfWcJE0mj1LUKkXBy3M5zeRAylzamcz_O6JPe8NebJYQtwhLBFD3bUtLrQyeiQLBe4nG2XNRADqQRqG5FFfjeACAClEVwn5O-zCknAI15Yba1OS-k68U-n0qeaCQU9_NUzxN9FvL1JUf5du1uGBqxnjznwvx_fT4td7I7fvzy_phK4-IOksmzcFWEGpGr4gjV1GbVUWEGkxNygVgtnoGbKyNUxxjrZ0HE9UszHoh7v5-j0N_muKYd4d-GmahcYfWW1gZr73-AVhURq4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696054939</pqid></control><display><type>article</type><title>Subcritical Hamilton-Jacobi fractional equation in R N</title><source>Access via Wiley Online Library</source><creator>Dlotko, Tomasz ; Kania, Maria B</creator><creatorcontrib>Dlotko, Tomasz ; Kania, Maria B</creatorcontrib><description>Solvability of Cauchy's problem in R N for fractional Hamilton-Jacobi equation (1.1) with subcritical nonlinearity is studied here both in the classical Sobolev spaces and in the locally uniform spaces. The first part of the paper is devoted to the global in time solvability of subcritical equation (1.1) in locally uniform phase space, a generalization of the standard Sobolev spaces. Subcritical growth of the nonlinear term with respect to the gradient is considered. We prove next the global in time solvability in classical Sobolev spaces, in Hilbert case. Regularization effect is used there to guarantee global in time extendibility of the local solution. Copyright © 2014 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0170-4214</identifier><identifier>EISSN: 1099-1476</identifier><identifier>DOI: 10.1002/mma.3241</identifier><identifier>CODEN: MMSCDB</identifier><language>eng</language><publisher>Freiburg: Wiley Subscription Services, Inc</publisher><ispartof>Mathematical methods in the applied sciences, 2015-08, Vol.38 (12), p.2547</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,781,785,27928,27929</link.rule.ids></links><search><creatorcontrib>Dlotko, Tomasz</creatorcontrib><creatorcontrib>Kania, Maria B</creatorcontrib><title>Subcritical Hamilton-Jacobi fractional equation in R N</title><title>Mathematical methods in the applied sciences</title><description>Solvability of Cauchy's problem in R N for fractional Hamilton-Jacobi equation (1.1) with subcritical nonlinearity is studied here both in the classical Sobolev spaces and in the locally uniform spaces. The first part of the paper is devoted to the global in time solvability of subcritical equation (1.1) in locally uniform phase space, a generalization of the standard Sobolev spaces. Subcritical growth of the nonlinear term with respect to the gradient is considered. We prove next the global in time solvability in classical Sobolev spaces, in Hilbert case. Regularization effect is used there to guarantee global in time extendibility of the local solution. Copyright © 2014 John Wiley & Sons, Ltd.</description><issn>0170-4214</issn><issn>1099-1476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotjttKAzEURYMoOFbBTxjwOfWcJE0mj1LUKkXBy3M5zeRAylzamcz_O6JPe8NebJYQtwhLBFD3bUtLrQyeiQLBe4nG2XNRADqQRqG5FFfjeACAClEVwn5O-zCknAI15Yba1OS-k68U-n0qeaCQU9_NUzxN9FvL1JUf5du1uGBqxnjznwvx_fT4td7I7fvzy_phK4-IOksmzcFWEGpGr4gjV1GbVUWEGkxNygVgtnoGbKyNUxxjrZ0HE9UszHoh7v5-j0N_muKYd4d-GmahcYfWW1gZr73-AVhURq4</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Dlotko, Tomasz</creator><creator>Kania, Maria B</creator><general>Wiley Subscription Services, Inc</general><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope></search><sort><creationdate>20150801</creationdate><title>Subcritical Hamilton-Jacobi fractional equation in R N</title><author>Dlotko, Tomasz ; Kania, Maria B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p113t-fa3fc680cdf192afef8e3458aa1304da27c0ff630cd6ed472feed37904e2170f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dlotko, Tomasz</creatorcontrib><creatorcontrib>Kania, Maria B</creatorcontrib><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><jtitle>Mathematical methods in the applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dlotko, Tomasz</au><au>Kania, Maria B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subcritical Hamilton-Jacobi fractional equation in R N</atitle><jtitle>Mathematical methods in the applied sciences</jtitle><date>2015-08-01</date><risdate>2015</risdate><volume>38</volume><issue>12</issue><spage>2547</spage><pages>2547-</pages><issn>0170-4214</issn><eissn>1099-1476</eissn><coden>MMSCDB</coden><abstract>Solvability of Cauchy's problem in R N for fractional Hamilton-Jacobi equation (1.1) with subcritical nonlinearity is studied here both in the classical Sobolev spaces and in the locally uniform spaces. The first part of the paper is devoted to the global in time solvability of subcritical equation (1.1) in locally uniform phase space, a generalization of the standard Sobolev spaces. Subcritical growth of the nonlinear term with respect to the gradient is considered. We prove next the global in time solvability in classical Sobolev spaces, in Hilbert case. Regularization effect is used there to guarantee global in time extendibility of the local solution. Copyright © 2014 John Wiley & Sons, Ltd.</abstract><cop>Freiburg</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mma.3241</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0170-4214 |
ispartof | Mathematical methods in the applied sciences, 2015-08, Vol.38 (12), p.2547 |
issn | 0170-4214 1099-1476 |
language | eng |
recordid | cdi_proquest_journals_1696054939 |
source | Access via Wiley Online Library |
title | Subcritical Hamilton-Jacobi fractional equation in R N |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subcritical%20Hamilton-Jacobi%20fractional%20equation%20in%20R%20N&rft.jtitle=Mathematical%20methods%20in%20the%20applied%20sciences&rft.au=Dlotko,%20Tomasz&rft.date=2015-08-01&rft.volume=38&rft.issue=12&rft.spage=2547&rft.pages=2547-&rft.issn=0170-4214&rft.eissn=1099-1476&rft.coden=MMSCDB&rft_id=info:doi/10.1002/mma.3241&rft_dat=%3Cproquest%3E3742643611%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696054939&rft_id=info:pmid/&rfr_iscdi=true |