Effects of Holothuroid Ichtyotoxic Saponins on the Gills of Free-Living Fishes and Symbiotic Pearlfishes

Several carapid fishes, known as pearlfishes, are endosymbiotic in holothuroids and asteroids. These echinoderms contain a strong concentration of saponins that are efficient membranolytic repellents to predators. We compared the effects of exposure to saponins from the sea cucumber body wall and fr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Biological bulletin (Lancaster) 2015-06, Vol.228 (3), p.253-265
Hauptverfasser: EECKHAUT, IGOR, CAULIER, GUILLAUME, BRASSEUR, LOLA, FLAMMANG, PATRICK, GERBAUX, PASCAL, PARMENTIER, ERIC
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 265
container_issue 3
container_start_page 253
container_title The Biological bulletin (Lancaster)
container_volume 228
creator EECKHAUT, IGOR
CAULIER, GUILLAUME
BRASSEUR, LOLA
FLAMMANG, PATRICK
GERBAUX, PASCAL
PARMENTIER, ERIC
description Several carapid fishes, known as pearlfishes, are endosymbiotic in holothuroids and asteroids. These echinoderms contain a strong concentration of saponins that are efficient membranolytic repellents to predators. We compared the effects of exposure to saponins from the sea cucumber body wall and from the Cuvierian tubules on the behavior and gill ultrastructure of pearlfishes and free-living fishes. Saponins were extracted from the body wall of two holothuroids, the Mediterranean Holothuria forskali and the tropical Bohadschia atra, and from the water surrounding the Cuvierian tubules of B. atra. Five species of carapids that live in symbiosis with holothuroids and seven species of free-living fishes were exposed to these extracts. The free-living fishes exhibited a stress response and died about 45 times faster than pearlfishes when exposed to the same quantity of saponins. Cuvierian tubules and saponins extracted from the body wall were lethal to the free-living fishes, whereas the carapids were much less sensitive. The carapids did not exhibit a stress response.The high toxicity shown by Cuvierian tubules was not explained by the nature of the saponins that were identified by mass spectrometry, but it is likely due to the higher concentration of saponins in the tubules. Histology and scanning and transmission electron microscopy of the gills of the free-living fishes and pearlfishes showed that saponins act at the level of the secondary lamellae where they induce the detachment of the epithelia, create edema at the level of the epithelia, and induce pores in the epithelial cells that lead to their destruction and the invasion of inner cells (pillar cells and red blood cells). This sequence of events happens 5 min after saponin exposure in free-living fishes and after 1 h in carapids.
doi_str_mv 10.1086/BBLv228n3p253
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1696036059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A424484481</galeid><jstor_id>24588180</jstor_id><sourcerecordid>A424484481</sourcerecordid><originalsourceid>FETCH-LOGICAL-c706t-ef6f57205601b690975b598f3a4a64f142689bd528f7ed9b56f26d8f453119083</originalsourceid><addsrcrecordid>eNqN0kFr2zAUB3AzNtas23HHDcMuG8OdJFuydGxDkwbCOsh2FrIs2QqKlUp2aL79lCZrSQnbsMGy_fs_ZL-XJO8huICAkm9XV_MNQrTL1wjnL5IRZDnLKGHly2QEACBZDik-S96EsIy3AMHidXKGCERFgeEoaa-1VrIPqdPpjbOubwfvTJ3OZNtvXe_ujUwXYu0600XTpX2r0qmx9iEw8Uplc7MxXZNOTGhVSEVXp4vtqjKuj8kfSnirH968TV5pYYN6d7ieJ78m1z_HN9n8djobX84zWQLSZ0oTjUsEMAGwIgywEleYUZ2LQpBCwwIRyqoaI6pLVbMKE41ITXWBcwgZoPl5ku_rWqMaxZ2vDN8g7oTZrwfbcCF5pTiKpTikOaYgpj7vU2vv7gYVer4yQSprRafcEDgsASzKuMP835QwVGLEih399Iwu3eC7-Pk7RUBOAGZPqhFWcdNp13shd0X5ZRHbROMJo8pOqEZ1ygvrOqVNfHzkL074eNRqZeTJwJejQDS9uu8bMYTAZ4vv_23pdP63jR-sdNbuGhSbP7496aV3IXil-dqblfBbDgHfjTw_GvnoPx5-8lCtVP2o_8x4BF_3YJCtkaJxa6_iNh9b8bzch71eht75p2oFphTGSfkNOBsNtg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1696036059</pqid></control><display><type>article</type><title>Effects of Holothuroid Ichtyotoxic Saponins on the Gills of Free-Living Fishes and Symbiotic Pearlfishes</title><source>MEDLINE</source><source>JSTOR Archive Collection A-Z Listing</source><creator>EECKHAUT, IGOR ; CAULIER, GUILLAUME ; BRASSEUR, LOLA ; FLAMMANG, PATRICK ; GERBAUX, PASCAL ; PARMENTIER, ERIC</creator><creatorcontrib>EECKHAUT, IGOR ; CAULIER, GUILLAUME ; BRASSEUR, LOLA ; FLAMMANG, PATRICK ; GERBAUX, PASCAL ; PARMENTIER, ERIC</creatorcontrib><description>Several carapid fishes, known as pearlfishes, are endosymbiotic in holothuroids and asteroids. These echinoderms contain a strong concentration of saponins that are efficient membranolytic repellents to predators. We compared the effects of exposure to saponins from the sea cucumber body wall and from the Cuvierian tubules on the behavior and gill ultrastructure of pearlfishes and free-living fishes. Saponins were extracted from the body wall of two holothuroids, the Mediterranean Holothuria forskali and the tropical Bohadschia atra, and from the water surrounding the Cuvierian tubules of B. atra. Five species of carapids that live in symbiosis with holothuroids and seven species of free-living fishes were exposed to these extracts. The free-living fishes exhibited a stress response and died about 45 times faster than pearlfishes when exposed to the same quantity of saponins. Cuvierian tubules and saponins extracted from the body wall were lethal to the free-living fishes, whereas the carapids were much less sensitive. The carapids did not exhibit a stress response.The high toxicity shown by Cuvierian tubules was not explained by the nature of the saponins that were identified by mass spectrometry, but it is likely due to the higher concentration of saponins in the tubules. Histology and scanning and transmission electron microscopy of the gills of the free-living fishes and pearlfishes showed that saponins act at the level of the secondary lamellae where they induce the detachment of the epithelia, create edema at the level of the epithelia, and induce pores in the epithelial cells that lead to their destruction and the invasion of inner cells (pillar cells and red blood cells). This sequence of events happens 5 min after saponin exposure in free-living fishes and after 1 h in carapids.</description><identifier>ISSN: 0006-3185</identifier><identifier>ISSN: 1939-8697</identifier><identifier>EISSN: 1939-8697</identifier><identifier>DOI: 10.1086/BBLv228n3p253</identifier><identifier>PMID: 26124451</identifier><language>eng</language><publisher>United States: Marine Biological Laboratory</publisher><subject>Animals ; Behavior, Animal - drug effects ; Blood vessels ; Bohadschia ; Carapidae ; Edema ; Epithelial cells ; Epithelial Cells - drug effects ; Erythrocytes ; Fish ; Fishes - physiology ; Gills ; Gills - drug effects ; Gills - ultrastructure ; Health aspects ; Histology ; Holothuria forskali ; Holothurioidea ; Integument ; Life sciences ; Marine fishes ; Mass spectrometry ; Mass spectroscopy ; Microscopy, Electron, Scanning ; Microscopy, Electron, Transmission ; Pisces ; Predators ; Repellents ; Saponins ; Saponins - chemistry ; Saponins - pharmacology ; Sciences du vivant ; Sea Cucumbers - chemistry ; Sea Cucumbers - physiology ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Stress response ; Symbiosis ; Symbiosis - physiology ; SYMBIOSIS AND PARASITOLOGY ; Toxicity ; Tropical fishes ; Zoologie ; Zoology</subject><ispartof>The Biological bulletin (Lancaster), 2015-06, Vol.228 (3), p.253-265</ispartof><rights>Copyright © 2015 Marine Biological Laboratory</rights><rights>2015 Marine Biological Laboratory</rights><rights>2015 Marine Biological Laboratory.</rights><rights>COPYRIGHT 2015 University of Chicago Press</rights><rights>COPYRIGHT 2015 University of Chicago Press</rights><rights>Copyright Marine Biological Laboratory Jun 1, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c706t-ef6f57205601b690975b598f3a4a64f142689bd528f7ed9b56f26d8f453119083</citedby><cites>FETCH-LOGICAL-c706t-ef6f57205601b690975b598f3a4a64f142689bd528f7ed9b56f26d8f453119083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24588180$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24588180$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,885,27923,27924,58016,58249</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26124451$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>EECKHAUT, IGOR</creatorcontrib><creatorcontrib>CAULIER, GUILLAUME</creatorcontrib><creatorcontrib>BRASSEUR, LOLA</creatorcontrib><creatorcontrib>FLAMMANG, PATRICK</creatorcontrib><creatorcontrib>GERBAUX, PASCAL</creatorcontrib><creatorcontrib>PARMENTIER, ERIC</creatorcontrib><title>Effects of Holothuroid Ichtyotoxic Saponins on the Gills of Free-Living Fishes and Symbiotic Pearlfishes</title><title>The Biological bulletin (Lancaster)</title><addtitle>Biol Bull</addtitle><description>Several carapid fishes, known as pearlfishes, are endosymbiotic in holothuroids and asteroids. These echinoderms contain a strong concentration of saponins that are efficient membranolytic repellents to predators. We compared the effects of exposure to saponins from the sea cucumber body wall and from the Cuvierian tubules on the behavior and gill ultrastructure of pearlfishes and free-living fishes. Saponins were extracted from the body wall of two holothuroids, the Mediterranean Holothuria forskali and the tropical Bohadschia atra, and from the water surrounding the Cuvierian tubules of B. atra. Five species of carapids that live in symbiosis with holothuroids and seven species of free-living fishes were exposed to these extracts. The free-living fishes exhibited a stress response and died about 45 times faster than pearlfishes when exposed to the same quantity of saponins. Cuvierian tubules and saponins extracted from the body wall were lethal to the free-living fishes, whereas the carapids were much less sensitive. The carapids did not exhibit a stress response.The high toxicity shown by Cuvierian tubules was not explained by the nature of the saponins that were identified by mass spectrometry, but it is likely due to the higher concentration of saponins in the tubules. Histology and scanning and transmission electron microscopy of the gills of the free-living fishes and pearlfishes showed that saponins act at the level of the secondary lamellae where they induce the detachment of the epithelia, create edema at the level of the epithelia, and induce pores in the epithelial cells that lead to their destruction and the invasion of inner cells (pillar cells and red blood cells). This sequence of events happens 5 min after saponin exposure in free-living fishes and after 1 h in carapids.</description><subject>Animals</subject><subject>Behavior, Animal - drug effects</subject><subject>Blood vessels</subject><subject>Bohadschia</subject><subject>Carapidae</subject><subject>Edema</subject><subject>Epithelial cells</subject><subject>Epithelial Cells - drug effects</subject><subject>Erythrocytes</subject><subject>Fish</subject><subject>Fishes - physiology</subject><subject>Gills</subject><subject>Gills - drug effects</subject><subject>Gills - ultrastructure</subject><subject>Health aspects</subject><subject>Histology</subject><subject>Holothuria forskali</subject><subject>Holothurioidea</subject><subject>Integument</subject><subject>Life sciences</subject><subject>Marine fishes</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Microscopy, Electron, Scanning</subject><subject>Microscopy, Electron, Transmission</subject><subject>Pisces</subject><subject>Predators</subject><subject>Repellents</subject><subject>Saponins</subject><subject>Saponins - chemistry</subject><subject>Saponins - pharmacology</subject><subject>Sciences du vivant</subject><subject>Sea Cucumbers - chemistry</subject><subject>Sea Cucumbers - physiology</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Stress response</subject><subject>Symbiosis</subject><subject>Symbiosis - physiology</subject><subject>SYMBIOSIS AND PARASITOLOGY</subject><subject>Toxicity</subject><subject>Tropical fishes</subject><subject>Zoologie</subject><subject>Zoology</subject><issn>0006-3185</issn><issn>1939-8697</issn><issn>1939-8697</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0kFr2zAUB3AzNtas23HHDcMuG8OdJFuydGxDkwbCOsh2FrIs2QqKlUp2aL79lCZrSQnbsMGy_fs_ZL-XJO8huICAkm9XV_MNQrTL1wjnL5IRZDnLKGHly2QEACBZDik-S96EsIy3AMHidXKGCERFgeEoaa-1VrIPqdPpjbOubwfvTJ3OZNtvXe_ujUwXYu0600XTpX2r0qmx9iEw8Uplc7MxXZNOTGhVSEVXp4vtqjKuj8kfSnirH968TV5pYYN6d7ieJ78m1z_HN9n8djobX84zWQLSZ0oTjUsEMAGwIgywEleYUZ2LQpBCwwIRyqoaI6pLVbMKE41ITXWBcwgZoPl5ku_rWqMaxZ2vDN8g7oTZrwfbcCF5pTiKpTikOaYgpj7vU2vv7gYVer4yQSprRafcEDgsASzKuMP835QwVGLEih399Iwu3eC7-Pk7RUBOAGZPqhFWcdNp13shd0X5ZRHbROMJo8pOqEZ1ygvrOqVNfHzkL074eNRqZeTJwJejQDS9uu8bMYTAZ4vv_23pdP63jR-sdNbuGhSbP7496aV3IXil-dqblfBbDgHfjTw_GvnoPx5-8lCtVP2o_8x4BF_3YJCtkaJxa6_iNh9b8bzch71eht75p2oFphTGSfkNOBsNtg</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>EECKHAUT, IGOR</creator><creator>CAULIER, GUILLAUME</creator><creator>BRASSEUR, LOLA</creator><creator>FLAMMANG, PATRICK</creator><creator>GERBAUX, PASCAL</creator><creator>PARMENTIER, ERIC</creator><general>Marine Biological Laboratory</general><general>University of Chicago Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8GL</scope><scope>ISN</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>K9.</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>Q33</scope></search><sort><creationdate>20150601</creationdate><title>Effects of Holothuroid Ichtyotoxic Saponins on the Gills of Free-Living Fishes and Symbiotic Pearlfishes</title><author>EECKHAUT, IGOR ; CAULIER, GUILLAUME ; BRASSEUR, LOLA ; FLAMMANG, PATRICK ; GERBAUX, PASCAL ; PARMENTIER, ERIC</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c706t-ef6f57205601b690975b598f3a4a64f142689bd528f7ed9b56f26d8f453119083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Animals</topic><topic>Behavior, Animal - drug effects</topic><topic>Blood vessels</topic><topic>Bohadschia</topic><topic>Carapidae</topic><topic>Edema</topic><topic>Epithelial cells</topic><topic>Epithelial Cells - drug effects</topic><topic>Erythrocytes</topic><topic>Fish</topic><topic>Fishes - physiology</topic><topic>Gills</topic><topic>Gills - drug effects</topic><topic>Gills - ultrastructure</topic><topic>Health aspects</topic><topic>Histology</topic><topic>Holothuria forskali</topic><topic>Holothurioidea</topic><topic>Integument</topic><topic>Life sciences</topic><topic>Marine fishes</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Microscopy, Electron, Scanning</topic><topic>Microscopy, Electron, Transmission</topic><topic>Pisces</topic><topic>Predators</topic><topic>Repellents</topic><topic>Saponins</topic><topic>Saponins - chemistry</topic><topic>Saponins - pharmacology</topic><topic>Sciences du vivant</topic><topic>Sea Cucumbers - chemistry</topic><topic>Sea Cucumbers - physiology</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Stress response</topic><topic>Symbiosis</topic><topic>Symbiosis - physiology</topic><topic>SYMBIOSIS AND PARASITOLOGY</topic><topic>Toxicity</topic><topic>Tropical fishes</topic><topic>Zoologie</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>EECKHAUT, IGOR</creatorcontrib><creatorcontrib>CAULIER, GUILLAUME</creatorcontrib><creatorcontrib>BRASSEUR, LOLA</creatorcontrib><creatorcontrib>FLAMMANG, PATRICK</creatorcontrib><creatorcontrib>GERBAUX, PASCAL</creatorcontrib><creatorcontrib>PARMENTIER, ERIC</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: High School</collection><collection>Gale In Context: Canada</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><jtitle>The Biological bulletin (Lancaster)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>EECKHAUT, IGOR</au><au>CAULIER, GUILLAUME</au><au>BRASSEUR, LOLA</au><au>FLAMMANG, PATRICK</au><au>GERBAUX, PASCAL</au><au>PARMENTIER, ERIC</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Holothuroid Ichtyotoxic Saponins on the Gills of Free-Living Fishes and Symbiotic Pearlfishes</atitle><jtitle>The Biological bulletin (Lancaster)</jtitle><addtitle>Biol Bull</addtitle><date>2015-06-01</date><risdate>2015</risdate><volume>228</volume><issue>3</issue><spage>253</spage><epage>265</epage><pages>253-265</pages><issn>0006-3185</issn><issn>1939-8697</issn><eissn>1939-8697</eissn><abstract>Several carapid fishes, known as pearlfishes, are endosymbiotic in holothuroids and asteroids. These echinoderms contain a strong concentration of saponins that are efficient membranolytic repellents to predators. We compared the effects of exposure to saponins from the sea cucumber body wall and from the Cuvierian tubules on the behavior and gill ultrastructure of pearlfishes and free-living fishes. Saponins were extracted from the body wall of two holothuroids, the Mediterranean Holothuria forskali and the tropical Bohadschia atra, and from the water surrounding the Cuvierian tubules of B. atra. Five species of carapids that live in symbiosis with holothuroids and seven species of free-living fishes were exposed to these extracts. The free-living fishes exhibited a stress response and died about 45 times faster than pearlfishes when exposed to the same quantity of saponins. Cuvierian tubules and saponins extracted from the body wall were lethal to the free-living fishes, whereas the carapids were much less sensitive. The carapids did not exhibit a stress response.The high toxicity shown by Cuvierian tubules was not explained by the nature of the saponins that were identified by mass spectrometry, but it is likely due to the higher concentration of saponins in the tubules. Histology and scanning and transmission electron microscopy of the gills of the free-living fishes and pearlfishes showed that saponins act at the level of the secondary lamellae where they induce the detachment of the epithelia, create edema at the level of the epithelia, and induce pores in the epithelial cells that lead to their destruction and the invasion of inner cells (pillar cells and red blood cells). This sequence of events happens 5 min after saponin exposure in free-living fishes and after 1 h in carapids.</abstract><cop>United States</cop><pub>Marine Biological Laboratory</pub><pmid>26124451</pmid><doi>10.1086/BBLv228n3p253</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3185
ispartof The Biological bulletin (Lancaster), 2015-06, Vol.228 (3), p.253-265
issn 0006-3185
1939-8697
1939-8697
language eng
recordid cdi_proquest_journals_1696036059
source MEDLINE; JSTOR Archive Collection A-Z Listing
subjects Animals
Behavior, Animal - drug effects
Blood vessels
Bohadschia
Carapidae
Edema
Epithelial cells
Epithelial Cells - drug effects
Erythrocytes
Fish
Fishes - physiology
Gills
Gills - drug effects
Gills - ultrastructure
Health aspects
Histology
Holothuria forskali
Holothurioidea
Integument
Life sciences
Marine fishes
Mass spectrometry
Mass spectroscopy
Microscopy, Electron, Scanning
Microscopy, Electron, Transmission
Pisces
Predators
Repellents
Saponins
Saponins - chemistry
Saponins - pharmacology
Sciences du vivant
Sea Cucumbers - chemistry
Sea Cucumbers - physiology
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Stress response
Symbiosis
Symbiosis - physiology
SYMBIOSIS AND PARASITOLOGY
Toxicity
Tropical fishes
Zoologie
Zoology
title Effects of Holothuroid Ichtyotoxic Saponins on the Gills of Free-Living Fishes and Symbiotic Pearlfishes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A17%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Holothuroid%20Ichtyotoxic%20Saponins%20on%20the%20Gills%20of%20Free-Living%20Fishes%20and%20Symbiotic%20Pearlfishes&rft.jtitle=The%20Biological%20bulletin%20(Lancaster)&rft.au=EECKHAUT,%20IGOR&rft.date=2015-06-01&rft.volume=228&rft.issue=3&rft.spage=253&rft.epage=265&rft.pages=253-265&rft.issn=0006-3185&rft.eissn=1939-8697&rft_id=info:doi/10.1086/BBLv228n3p253&rft_dat=%3Cgale_proqu%3EA424484481%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1696036059&rft_id=info:pmid/26124451&rft_galeid=A424484481&rft_jstor_id=24588180&rfr_iscdi=true