Ant Colony Optimization-Based Adaptive Network-on-Chip Routing Framework Using Network Information Region
The network-on-chip (NoC) system can provide more scalable and flexible on-chip interconnection compared with system bus. The performance of on-chip adaptive routing algorithms greatly relies on the adopted network information. To the best our knowledge, previous routing algorithms utilize either sp...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on computers 2015-08, Vol.64 (8), p.2119-2131 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2131 |
---|---|
container_issue | 8 |
container_start_page | 2119 |
container_title | IEEE transactions on computers |
container_volume | 64 |
creator | Hsin, Hsien-Kai Chang, En-Jui Su, Kuan-Yu Wu, An-Yeu |
description | The network-on-chip (NoC) system can provide more scalable and flexible on-chip interconnection compared with system bus. The performance of on-chip adaptive routing algorithms greatly relies on the adopted network information. To the best our knowledge, previous routing algorithms utilize either spatial or temporal network information to improve performance. However, few works have established a framework on analyzing the network information nor showed how to integrate the spatial and temporal network information. In this paper, we define the network information region (NIR) framework for NoC systems. The NIR can indicate arbitrary combinations of network information and corresponding routing algorithms. We demonstrate how to apply NIR on analyzing the adaptive routing algorithms. To further demonstrate how NIR can help to integrate the spatial or temporal network information, we propose the ACO-based pheromone diffusion (ACO-PhD) adaptive routing framework based on the NIR. By diffusing the pheromone outward, spatial and temporal network information can be exchanged among adjacent routers. The range (i.e., size and shape) of the NIR is controllable by setting the parameters in the ACO-PhD algorithm. We show that we can reconfigure the ACO-PhD algorithm to each routing algorithm in its NIR subsets by adjusting the parameter settings. Finally, we implement and analyze the hardware design of corresponding router architecture. The results show an improvement of 4.86-16.93 percent on network performance and the highest area efficiency is achieved by the proposed algorithm. |
doi_str_mv | 10.1109/TC.2014.2366768 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1695951280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6945251</ieee_id><sourcerecordid>3742023511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-396ba452cb295270ff449c5ce6de65ff517f9a7e8b261a70f37c0163c373990b3</originalsourceid><addsrcrecordid>eNpdkM1PAjEQxRujiYiePXhp4sXLQj-27faIG1ESIgmBc9Ndulhkt9guGvzr7Qrx4Gky834zmfcAuMVogDGSw0U-IAinA0I5Fzw7Az3MmEikZPwc9BDCWSJpii7BVQgbhBAnSPaAHTUtzN3WNQc427W2tt-6ta5JHnUwKzha6Tj8NPDVtF_OvydRyd_sDs7dvrXNGo69rk2nwGXo-hMHJ03lfP17Cs7NOpZrcFHpbTA3p9oHy_HTIn9JprPnST6aJiUlpE2o5IVOGSkLIhkRqKrSVJasNHxlOKsqhkUltTBZQTjWUaeiRJjTkgoqJSpoHzwc7-68-9ib0KrahtJst7oxbh8UFtG5EBmlEb3_h27c3jfxO4W5ZJJhkqFIDY9U6V0I3lRq522t_UFhpLro1SJXXfTqFH3cuDtuWGPMH81ltMUw_QGzKH8f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1695951280</pqid></control><display><type>article</type><title>Ant Colony Optimization-Based Adaptive Network-on-Chip Routing Framework Using Network Information Region</title><source>IEEE Electronic Library (IEL)</source><creator>Hsin, Hsien-Kai ; Chang, En-Jui ; Su, Kuan-Yu ; Wu, An-Yeu</creator><creatorcontrib>Hsin, Hsien-Kai ; Chang, En-Jui ; Su, Kuan-Yu ; Wu, An-Yeu</creatorcontrib><description>The network-on-chip (NoC) system can provide more scalable and flexible on-chip interconnection compared with system bus. The performance of on-chip adaptive routing algorithms greatly relies on the adopted network information. To the best our knowledge, previous routing algorithms utilize either spatial or temporal network information to improve performance. However, few works have established a framework on analyzing the network information nor showed how to integrate the spatial and temporal network information. In this paper, we define the network information region (NIR) framework for NoC systems. The NIR can indicate arbitrary combinations of network information and corresponding routing algorithms. We demonstrate how to apply NIR on analyzing the adaptive routing algorithms. To further demonstrate how NIR can help to integrate the spatial or temporal network information, we propose the ACO-based pheromone diffusion (ACO-PhD) adaptive routing framework based on the NIR. By diffusing the pheromone outward, spatial and temporal network information can be exchanged among adjacent routers. The range (i.e., size and shape) of the NIR is controllable by setting the parameters in the ACO-PhD algorithm. We show that we can reconfigure the ACO-PhD algorithm to each routing algorithm in its NIR subsets by adjusting the parameter settings. Finally, we implement and analyze the hardware design of corresponding router architecture. The results show an improvement of 4.86-16.93 percent on network performance and the highest area efficiency is achieved by the proposed algorithm.</description><identifier>ISSN: 0018-9340</identifier><identifier>EISSN: 1557-9956</identifier><identifier>DOI: 10.1109/TC.2014.2366768</identifier><identifier>CODEN: ITCOB4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive algorithms ; Adaptive Routing ; Adaptive systems ; Algorithm design and analysis ; Algorithms ; Ant Colony Optimization ; Computer networks ; Diffusion ; Heuristic ; Indexes ; Network Information Region ; Network-on-chip ; Networks ; Optimization ; Routers ; Routing ; Routing (telecommunications) ; Temporal logic ; Wiring</subject><ispartof>IEEE transactions on computers, 2015-08, Vol.64 (8), p.2119-2131</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Aug 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-396ba452cb295270ff449c5ce6de65ff517f9a7e8b261a70f37c0163c373990b3</citedby><cites>FETCH-LOGICAL-c322t-396ba452cb295270ff449c5ce6de65ff517f9a7e8b261a70f37c0163c373990b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6945251$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6945251$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hsin, Hsien-Kai</creatorcontrib><creatorcontrib>Chang, En-Jui</creatorcontrib><creatorcontrib>Su, Kuan-Yu</creatorcontrib><creatorcontrib>Wu, An-Yeu</creatorcontrib><title>Ant Colony Optimization-Based Adaptive Network-on-Chip Routing Framework Using Network Information Region</title><title>IEEE transactions on computers</title><addtitle>TC</addtitle><description>The network-on-chip (NoC) system can provide more scalable and flexible on-chip interconnection compared with system bus. The performance of on-chip adaptive routing algorithms greatly relies on the adopted network information. To the best our knowledge, previous routing algorithms utilize either spatial or temporal network information to improve performance. However, few works have established a framework on analyzing the network information nor showed how to integrate the spatial and temporal network information. In this paper, we define the network information region (NIR) framework for NoC systems. The NIR can indicate arbitrary combinations of network information and corresponding routing algorithms. We demonstrate how to apply NIR on analyzing the adaptive routing algorithms. To further demonstrate how NIR can help to integrate the spatial or temporal network information, we propose the ACO-based pheromone diffusion (ACO-PhD) adaptive routing framework based on the NIR. By diffusing the pheromone outward, spatial and temporal network information can be exchanged among adjacent routers. The range (i.e., size and shape) of the NIR is controllable by setting the parameters in the ACO-PhD algorithm. We show that we can reconfigure the ACO-PhD algorithm to each routing algorithm in its NIR subsets by adjusting the parameter settings. Finally, we implement and analyze the hardware design of corresponding router architecture. The results show an improvement of 4.86-16.93 percent on network performance and the highest area efficiency is achieved by the proposed algorithm.</description><subject>Adaptive algorithms</subject><subject>Adaptive Routing</subject><subject>Adaptive systems</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Ant Colony Optimization</subject><subject>Computer networks</subject><subject>Diffusion</subject><subject>Heuristic</subject><subject>Indexes</subject><subject>Network Information Region</subject><subject>Network-on-chip</subject><subject>Networks</subject><subject>Optimization</subject><subject>Routers</subject><subject>Routing</subject><subject>Routing (telecommunications)</subject><subject>Temporal logic</subject><subject>Wiring</subject><issn>0018-9340</issn><issn>1557-9956</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM1PAjEQxRujiYiePXhp4sXLQj-27faIG1ESIgmBc9Ndulhkt9guGvzr7Qrx4Gky834zmfcAuMVogDGSw0U-IAinA0I5Fzw7Az3MmEikZPwc9BDCWSJpii7BVQgbhBAnSPaAHTUtzN3WNQc427W2tt-6ta5JHnUwKzha6Tj8NPDVtF_OvydRyd_sDs7dvrXNGo69rk2nwGXo-hMHJ03lfP17Cs7NOpZrcFHpbTA3p9oHy_HTIn9JprPnST6aJiUlpE2o5IVOGSkLIhkRqKrSVJasNHxlOKsqhkUltTBZQTjWUaeiRJjTkgoqJSpoHzwc7-68-9ib0KrahtJst7oxbh8UFtG5EBmlEb3_h27c3jfxO4W5ZJJhkqFIDY9U6V0I3lRq522t_UFhpLro1SJXXfTqFH3cuDtuWGPMH81ltMUw_QGzKH8f</recordid><startdate>20150801</startdate><enddate>20150801</enddate><creator>Hsin, Hsien-Kai</creator><creator>Chang, En-Jui</creator><creator>Su, Kuan-Yu</creator><creator>Wu, An-Yeu</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20150801</creationdate><title>Ant Colony Optimization-Based Adaptive Network-on-Chip Routing Framework Using Network Information Region</title><author>Hsin, Hsien-Kai ; Chang, En-Jui ; Su, Kuan-Yu ; Wu, An-Yeu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-396ba452cb295270ff449c5ce6de65ff517f9a7e8b261a70f37c0163c373990b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive algorithms</topic><topic>Adaptive Routing</topic><topic>Adaptive systems</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Ant Colony Optimization</topic><topic>Computer networks</topic><topic>Diffusion</topic><topic>Heuristic</topic><topic>Indexes</topic><topic>Network Information Region</topic><topic>Network-on-chip</topic><topic>Networks</topic><topic>Optimization</topic><topic>Routers</topic><topic>Routing</topic><topic>Routing (telecommunications)</topic><topic>Temporal logic</topic><topic>Wiring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hsin, Hsien-Kai</creatorcontrib><creatorcontrib>Chang, En-Jui</creatorcontrib><creatorcontrib>Su, Kuan-Yu</creatorcontrib><creatorcontrib>Wu, An-Yeu</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on computers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hsin, Hsien-Kai</au><au>Chang, En-Jui</au><au>Su, Kuan-Yu</au><au>Wu, An-Yeu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ant Colony Optimization-Based Adaptive Network-on-Chip Routing Framework Using Network Information Region</atitle><jtitle>IEEE transactions on computers</jtitle><stitle>TC</stitle><date>2015-08-01</date><risdate>2015</risdate><volume>64</volume><issue>8</issue><spage>2119</spage><epage>2131</epage><pages>2119-2131</pages><issn>0018-9340</issn><eissn>1557-9956</eissn><coden>ITCOB4</coden><abstract>The network-on-chip (NoC) system can provide more scalable and flexible on-chip interconnection compared with system bus. The performance of on-chip adaptive routing algorithms greatly relies on the adopted network information. To the best our knowledge, previous routing algorithms utilize either spatial or temporal network information to improve performance. However, few works have established a framework on analyzing the network information nor showed how to integrate the spatial and temporal network information. In this paper, we define the network information region (NIR) framework for NoC systems. The NIR can indicate arbitrary combinations of network information and corresponding routing algorithms. We demonstrate how to apply NIR on analyzing the adaptive routing algorithms. To further demonstrate how NIR can help to integrate the spatial or temporal network information, we propose the ACO-based pheromone diffusion (ACO-PhD) adaptive routing framework based on the NIR. By diffusing the pheromone outward, spatial and temporal network information can be exchanged among adjacent routers. The range (i.e., size and shape) of the NIR is controllable by setting the parameters in the ACO-PhD algorithm. We show that we can reconfigure the ACO-PhD algorithm to each routing algorithm in its NIR subsets by adjusting the parameter settings. Finally, we implement and analyze the hardware design of corresponding router architecture. The results show an improvement of 4.86-16.93 percent on network performance and the highest area efficiency is achieved by the proposed algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TC.2014.2366768</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9340 |
ispartof | IEEE transactions on computers, 2015-08, Vol.64 (8), p.2119-2131 |
issn | 0018-9340 1557-9956 |
language | eng |
recordid | cdi_proquest_journals_1695951280 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive algorithms Adaptive Routing Adaptive systems Algorithm design and analysis Algorithms Ant Colony Optimization Computer networks Diffusion Heuristic Indexes Network Information Region Network-on-chip Networks Optimization Routers Routing Routing (telecommunications) Temporal logic Wiring |
title | Ant Colony Optimization-Based Adaptive Network-on-Chip Routing Framework Using Network Information Region |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T08%3A23%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ant%20Colony%20Optimization-Based%20Adaptive%20Network-on-Chip%20Routing%20Framework%20Using%20Network%20Information%20Region&rft.jtitle=IEEE%20transactions%20on%20computers&rft.au=Hsin,%20Hsien-Kai&rft.date=2015-08-01&rft.volume=64&rft.issue=8&rft.spage=2119&rft.epage=2131&rft.pages=2119-2131&rft.issn=0018-9340&rft.eissn=1557-9956&rft.coden=ITCOB4&rft_id=info:doi/10.1109/TC.2014.2366768&rft_dat=%3Cproquest_RIE%3E3742023511%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1695951280&rft_id=info:pmid/&rft_ieee_id=6945251&rfr_iscdi=true |