Large-scale convex optimization for ultra-dense cloud-RAN
The heterogeneous cloud radio access network (Cloud-RAN) provides a revolutionary way to densify radio access networks. It enables centralized coordination and signal processing for efficient interference management and flexible network adaptation. Thus it can resolve the main challenges for next-ge...
Gespeichert in:
Veröffentlicht in: | IEEE wireless communications 2015-06, Vol.22 (3), p.84-91 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91 |
---|---|
container_issue | 3 |
container_start_page | 84 |
container_title | IEEE wireless communications |
container_volume | 22 |
creator | Yuanming Shi Jun Zhang Letaief, Khaled B. Bo Bai Wei Chen |
description | The heterogeneous cloud radio access network (Cloud-RAN) provides a revolutionary way to densify radio access networks. It enables centralized coordination and signal processing for efficient interference management and flexible network adaptation. Thus it can resolve the main challenges for next-generation wireless networks, including higher energy efficiency and spectral efficiency, higher cost efficiency, scalable connectivity, and low latency. In this article we will provide an algorithmic approach to the new design challenges for the dense heterogeneous Cloud-RAN based on convex optimization. As problem sizes scale up with the network size, we will demonstrate that it is critical to take unique structures of design problems and inherent characteristics of wireless channels into consideration, while convex optimization will serve as a powerful tool for such purposes. Network power minimization and channel state information acquisition will be used as two typical examples to demonstrate the effectiveness of convex optimization methods. Then we will present a twostage framework to solve general large-scale convex optimization problems, which is amenable to parallel implementation in the cloud data center. |
doi_str_mv | 10.1109/MWC.2015.7143330 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1694627000</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7143330</ieee_id><sourcerecordid>3736745321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-19451cf51330a80801f095c6fe600191a6dcee5ed2f4a11def3cb9760e3dbea53</originalsourceid><addsrcrecordid>eNo9kN9LwzAQx4MoOKfvgi8Fn1Pv2iZtH8fwF0wFUXwMWXqRjq6ZSSvqX2_Gpk93cJ-7-_Jh7BwhRYT66uFtnmaAIi2xyPMcDtgEhag4yKo83Pa55JhVxTE7CWEFgKUUcsLqhfbvxIPRHSXG9Z_0lbjN0K7bHz20rk-s88nYDV7zhvoQmc6NDX-ePZ6yI6u7QGf7OmWvN9cv8zu-eLq9n88W3MQYA8e6EGiswJhJV1ABWqiFkZZkDFGjlo0hEtRkttCIDdncLOtSAuXNkrTIp-xyd3fj3cdIYVArN_o-vlQo60JmJQBECnaU8S4ET1ZtfLvW_lshqK0gFQWprSC1FxRXLnYrLRH943_TX2vcYFs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1694627000</pqid></control><display><type>article</type><title>Large-scale convex optimization for ultra-dense cloud-RAN</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Yuanming Shi ; Jun Zhang ; Letaief, Khaled B. ; Bo Bai ; Wei Chen</creator><creatorcontrib>Yuanming Shi ; Jun Zhang ; Letaief, Khaled B. ; Bo Bai ; Wei Chen</creatorcontrib><description>The heterogeneous cloud radio access network (Cloud-RAN) provides a revolutionary way to densify radio access networks. It enables centralized coordination and signal processing for efficient interference management and flexible network adaptation. Thus it can resolve the main challenges for next-generation wireless networks, including higher energy efficiency and spectral efficiency, higher cost efficiency, scalable connectivity, and low latency. In this article we will provide an algorithmic approach to the new design challenges for the dense heterogeneous Cloud-RAN based on convex optimization. As problem sizes scale up with the network size, we will demonstrate that it is critical to take unique structures of design problems and inherent characteristics of wireless channels into consideration, while convex optimization will serve as a powerful tool for such purposes. Network power minimization and channel state information acquisition will be used as two typical examples to demonstrate the effectiveness of convex optimization methods. Then we will present a twostage framework to solve general large-scale convex optimization problems, which is amenable to parallel implementation in the cloud data center.</description><identifier>ISSN: 1536-1284</identifier><identifier>EISSN: 1558-0687</identifier><identifier>DOI: 10.1109/MWC.2015.7143330</identifier><identifier>CODEN: IWCEAS</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithm design and analysis ; Array signal processing ; Cloud computing ; Convex analysis ; Convex functions ; Efficiency ; Mobile communication ; Mobile computing ; Optimization ; Radio access networks ; Wireless networks</subject><ispartof>IEEE wireless communications, 2015-06, Vol.22 (3), p.84-91</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-19451cf51330a80801f095c6fe600191a6dcee5ed2f4a11def3cb9760e3dbea53</citedby><cites>FETCH-LOGICAL-c333t-19451cf51330a80801f095c6fe600191a6dcee5ed2f4a11def3cb9760e3dbea53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7143330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7143330$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuanming Shi</creatorcontrib><creatorcontrib>Jun Zhang</creatorcontrib><creatorcontrib>Letaief, Khaled B.</creatorcontrib><creatorcontrib>Bo Bai</creatorcontrib><creatorcontrib>Wei Chen</creatorcontrib><title>Large-scale convex optimization for ultra-dense cloud-RAN</title><title>IEEE wireless communications</title><addtitle>WC-M</addtitle><description>The heterogeneous cloud radio access network (Cloud-RAN) provides a revolutionary way to densify radio access networks. It enables centralized coordination and signal processing for efficient interference management and flexible network adaptation. Thus it can resolve the main challenges for next-generation wireless networks, including higher energy efficiency and spectral efficiency, higher cost efficiency, scalable connectivity, and low latency. In this article we will provide an algorithmic approach to the new design challenges for the dense heterogeneous Cloud-RAN based on convex optimization. As problem sizes scale up with the network size, we will demonstrate that it is critical to take unique structures of design problems and inherent characteristics of wireless channels into consideration, while convex optimization will serve as a powerful tool for such purposes. Network power minimization and channel state information acquisition will be used as two typical examples to demonstrate the effectiveness of convex optimization methods. Then we will present a twostage framework to solve general large-scale convex optimization problems, which is amenable to parallel implementation in the cloud data center.</description><subject>Algorithm design and analysis</subject><subject>Array signal processing</subject><subject>Cloud computing</subject><subject>Convex analysis</subject><subject>Convex functions</subject><subject>Efficiency</subject><subject>Mobile communication</subject><subject>Mobile computing</subject><subject>Optimization</subject><subject>Radio access networks</subject><subject>Wireless networks</subject><issn>1536-1284</issn><issn>1558-0687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kN9LwzAQx4MoOKfvgi8Fn1Pv2iZtH8fwF0wFUXwMWXqRjq6ZSSvqX2_Gpk93cJ-7-_Jh7BwhRYT66uFtnmaAIi2xyPMcDtgEhag4yKo83Pa55JhVxTE7CWEFgKUUcsLqhfbvxIPRHSXG9Z_0lbjN0K7bHz20rk-s88nYDV7zhvoQmc6NDX-ePZ6yI6u7QGf7OmWvN9cv8zu-eLq9n88W3MQYA8e6EGiswJhJV1ABWqiFkZZkDFGjlo0hEtRkttCIDdncLOtSAuXNkrTIp-xyd3fj3cdIYVArN_o-vlQo60JmJQBECnaU8S4ET1ZtfLvW_lshqK0gFQWprSC1FxRXLnYrLRH943_TX2vcYFs</recordid><startdate>201506</startdate><enddate>201506</enddate><creator>Yuanming Shi</creator><creator>Jun Zhang</creator><creator>Letaief, Khaled B.</creator><creator>Bo Bai</creator><creator>Wei Chen</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201506</creationdate><title>Large-scale convex optimization for ultra-dense cloud-RAN</title><author>Yuanming Shi ; Jun Zhang ; Letaief, Khaled B. ; Bo Bai ; Wei Chen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-19451cf51330a80801f095c6fe600191a6dcee5ed2f4a11def3cb9760e3dbea53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithm design and analysis</topic><topic>Array signal processing</topic><topic>Cloud computing</topic><topic>Convex analysis</topic><topic>Convex functions</topic><topic>Efficiency</topic><topic>Mobile communication</topic><topic>Mobile computing</topic><topic>Optimization</topic><topic>Radio access networks</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuanming Shi</creatorcontrib><creatorcontrib>Jun Zhang</creatorcontrib><creatorcontrib>Letaief, Khaled B.</creatorcontrib><creatorcontrib>Bo Bai</creatorcontrib><creatorcontrib>Wei Chen</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE wireless communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuanming Shi</au><au>Jun Zhang</au><au>Letaief, Khaled B.</au><au>Bo Bai</au><au>Wei Chen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large-scale convex optimization for ultra-dense cloud-RAN</atitle><jtitle>IEEE wireless communications</jtitle><stitle>WC-M</stitle><date>2015-06</date><risdate>2015</risdate><volume>22</volume><issue>3</issue><spage>84</spage><epage>91</epage><pages>84-91</pages><issn>1536-1284</issn><eissn>1558-0687</eissn><coden>IWCEAS</coden><abstract>The heterogeneous cloud radio access network (Cloud-RAN) provides a revolutionary way to densify radio access networks. It enables centralized coordination and signal processing for efficient interference management and flexible network adaptation. Thus it can resolve the main challenges for next-generation wireless networks, including higher energy efficiency and spectral efficiency, higher cost efficiency, scalable connectivity, and low latency. In this article we will provide an algorithmic approach to the new design challenges for the dense heterogeneous Cloud-RAN based on convex optimization. As problem sizes scale up with the network size, we will demonstrate that it is critical to take unique structures of design problems and inherent characteristics of wireless channels into consideration, while convex optimization will serve as a powerful tool for such purposes. Network power minimization and channel state information acquisition will be used as two typical examples to demonstrate the effectiveness of convex optimization methods. Then we will present a twostage framework to solve general large-scale convex optimization problems, which is amenable to parallel implementation in the cloud data center.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/MWC.2015.7143330</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1284 |
ispartof | IEEE wireless communications, 2015-06, Vol.22 (3), p.84-91 |
issn | 1536-1284 1558-0687 |
language | eng |
recordid | cdi_proquest_journals_1694627000 |
source | IEEE/IET Electronic Library (IEL) |
subjects | Algorithm design and analysis Array signal processing Cloud computing Convex analysis Convex functions Efficiency Mobile communication Mobile computing Optimization Radio access networks Wireless networks |
title | Large-scale convex optimization for ultra-dense cloud-RAN |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T20%3A14%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large-scale%20convex%20optimization%20for%20ultra-dense%20cloud-RAN&rft.jtitle=IEEE%20wireless%20communications&rft.au=Yuanming%20Shi&rft.date=2015-06&rft.volume=22&rft.issue=3&rft.spage=84&rft.epage=91&rft.pages=84-91&rft.issn=1536-1284&rft.eissn=1558-0687&rft.coden=IWCEAS&rft_id=info:doi/10.1109/MWC.2015.7143330&rft_dat=%3Cproquest_RIE%3E3736745321%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1694627000&rft_id=info:pmid/&rft_ieee_id=7143330&rfr_iscdi=true |