PID Algorithm Application in the Mechanical Sealing Based on BP Neural Network

Based on BP neural network algorithm, combined with PID linear control theory, we establish neural network residual training model of mechanical seal device, and design the simulation system of mechanical seal device with FLUENT simulation software. In order to verify the availability and reliabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials 2014-05, Vol.556-562, p.4228-4231
Hauptverfasser: Li, Jia Sheng, Lu, Bao Cheng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4231
container_issue
container_start_page 4228
container_title Applied Mechanics and Materials
container_volume 556-562
creator Li, Jia Sheng
Lu, Bao Cheng
description Based on BP neural network algorithm, combined with PID linear control theory, we establish neural network residual training model of mechanical seal device, and design the simulation system of mechanical seal device with FLUENT simulation software. In order to verify the availability and reliability of the system, we design two different mechanical sealing devices, and do simulation calculation on the two kinds of devices. We get the sealing pressure field and velocity field distribution curve of device 1 and device 2. Through calculation we get sealing quality change curve with time. Through comparing the two different sealing performances we found the sealing effect of device 2 is better, the sealing efficiency reaches 98.2%, which meets the design requirements of the mechanical seal.
doi_str_mv 10.4028/www.scientific.net/AMM.556-562.4228
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1690891931</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3724761691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c305t-6c7a45c7922529722da78f006e10f80078de868586d5dc18ced8d351cff938543</originalsourceid><addsrcrecordid>eNqV0FtPwjAYBuDGQyKg_6GJl2ajh7XrLgFRSQBJ1Oum6Toojg3bksV_bxETvfWqSb8379c-ANxhlGaIiGHXdanX1jTBVlanjQnD0WKRMsYTxkmaESLOQA9zTpI8E-Qc9CmigjKMGb_4HqCkoJRfgb73W4R4hjPRA8vV7B6O6nXrbNjs4Gi_r61WwbYNtA0MGwMXRm9UEy9r-GJUbZs1HCtvShgj4xVcmoOLo6UJXever8FlpWpvbn7OAXh7mL5OnpL58-NsMponmiIWEq5zlTGdF4QwUuSElCoXVXyUwagSCOWiNIILJnjJSo2FNqUo4190VRVUsIwOwO2pd-_aj4PxQW7bg2viSol5gUSBC4pjanJKadd670wl987ulPuUGMmjqoyq8ldVRlUZVWVUlVFVHlVjy_TUEpxqfIgcf5b9o-cLBK6G7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1690891931</pqid></control><display><type>article</type><title>PID Algorithm Application in the Mechanical Sealing Based on BP Neural Network</title><source>Scientific.net Journals</source><creator>Li, Jia Sheng ; Lu, Bao Cheng</creator><creatorcontrib>Li, Jia Sheng ; Lu, Bao Cheng</creatorcontrib><description>Based on BP neural network algorithm, combined with PID linear control theory, we establish neural network residual training model of mechanical seal device, and design the simulation system of mechanical seal device with FLUENT simulation software. In order to verify the availability and reliability of the system, we design two different mechanical sealing devices, and do simulation calculation on the two kinds of devices. We get the sealing pressure field and velocity field distribution curve of device 1 and device 2. Through calculation we get sealing quality change curve with time. Through comparing the two different sealing performances we found the sealing effect of device 2 is better, the sealing efficiency reaches 98.2%, which meets the design requirements of the mechanical seal.</description><identifier>ISSN: 1660-9336</identifier><identifier>ISSN: 1662-7482</identifier><identifier>ISBN: 3038351156</identifier><identifier>ISBN: 9783038351153</identifier><identifier>EISSN: 1662-7482</identifier><identifier>DOI: 10.4028/www.scientific.net/AMM.556-562.4228</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><ispartof>Applied Mechanics and Materials, 2014-05, Vol.556-562, p.4228-4231</ispartof><rights>2014 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. May 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3207?width=600</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Li, Jia Sheng</creatorcontrib><creatorcontrib>Lu, Bao Cheng</creatorcontrib><title>PID Algorithm Application in the Mechanical Sealing Based on BP Neural Network</title><title>Applied Mechanics and Materials</title><description>Based on BP neural network algorithm, combined with PID linear control theory, we establish neural network residual training model of mechanical seal device, and design the simulation system of mechanical seal device with FLUENT simulation software. In order to verify the availability and reliability of the system, we design two different mechanical sealing devices, and do simulation calculation on the two kinds of devices. We get the sealing pressure field and velocity field distribution curve of device 1 and device 2. Through calculation we get sealing quality change curve with time. Through comparing the two different sealing performances we found the sealing effect of device 2 is better, the sealing efficiency reaches 98.2%, which meets the design requirements of the mechanical seal.</description><issn>1660-9336</issn><issn>1662-7482</issn><issn>1662-7482</issn><isbn>3038351156</isbn><isbn>9783038351153</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqV0FtPwjAYBuDGQyKg_6GJl2ajh7XrLgFRSQBJ1Oum6Toojg3bksV_bxETvfWqSb8379c-ANxhlGaIiGHXdanX1jTBVlanjQnD0WKRMsYTxkmaESLOQA9zTpI8E-Qc9CmigjKMGb_4HqCkoJRfgb73W4R4hjPRA8vV7B6O6nXrbNjs4Gi_r61WwbYNtA0MGwMXRm9UEy9r-GJUbZs1HCtvShgj4xVcmoOLo6UJXever8FlpWpvbn7OAXh7mL5OnpL58-NsMponmiIWEq5zlTGdF4QwUuSElCoXVXyUwagSCOWiNIILJnjJSo2FNqUo4190VRVUsIwOwO2pd-_aj4PxQW7bg2viSol5gUSBC4pjanJKadd670wl987ulPuUGMmjqoyq8ldVRlUZVWVUlVFVHlVjy_TUEpxqfIgcf5b9o-cLBK6G7w</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Li, Jia Sheng</creator><creator>Lu, Bao Cheng</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20140501</creationdate><title>PID Algorithm Application in the Mechanical Sealing Based on BP Neural Network</title><author>Li, Jia Sheng ; Lu, Bao Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c305t-6c7a45c7922529722da78f006e10f80078de868586d5dc18ced8d351cff938543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Jia Sheng</creatorcontrib><creatorcontrib>Lu, Bao Cheng</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Applied Mechanics and Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Jia Sheng</au><au>Lu, Bao Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>PID Algorithm Application in the Mechanical Sealing Based on BP Neural Network</atitle><jtitle>Applied Mechanics and Materials</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>556-562</volume><spage>4228</spage><epage>4231</epage><pages>4228-4231</pages><issn>1660-9336</issn><issn>1662-7482</issn><eissn>1662-7482</eissn><isbn>3038351156</isbn><isbn>9783038351153</isbn><abstract>Based on BP neural network algorithm, combined with PID linear control theory, we establish neural network residual training model of mechanical seal device, and design the simulation system of mechanical seal device with FLUENT simulation software. In order to verify the availability and reliability of the system, we design two different mechanical sealing devices, and do simulation calculation on the two kinds of devices. We get the sealing pressure field and velocity field distribution curve of device 1 and device 2. Through calculation we get sealing quality change curve with time. Through comparing the two different sealing performances we found the sealing effect of device 2 is better, the sealing efficiency reaches 98.2%, which meets the design requirements of the mechanical seal.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/AMM.556-562.4228</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1660-9336
ispartof Applied Mechanics and Materials, 2014-05, Vol.556-562, p.4228-4231
issn 1660-9336
1662-7482
1662-7482
language eng
recordid cdi_proquest_journals_1690891931
source Scientific.net Journals
title PID Algorithm Application in the Mechanical Sealing Based on BP Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T04%3A59%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=PID%20Algorithm%20Application%20in%20the%20Mechanical%20Sealing%20Based%20on%20BP%20Neural%20Network&rft.jtitle=Applied%20Mechanics%20and%20Materials&rft.au=Li,%20Jia%20Sheng&rft.date=2014-05-01&rft.volume=556-562&rft.spage=4228&rft.epage=4231&rft.pages=4228-4231&rft.issn=1660-9336&rft.eissn=1662-7482&rft.isbn=3038351156&rft.isbn_list=9783038351153&rft_id=info:doi/10.4028/www.scientific.net/AMM.556-562.4228&rft_dat=%3Cproquest_cross%3E3724761691%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1690891931&rft_id=info:pmid/&rfr_iscdi=true