Bayesians in Space: Using Bayesian Methods to Inform Choice of Spatial Weights Matrix in Hedonic Property Analyses

The choice of weights is a non-nested problem in most applied spatial econometric models. Despite numerous recent advances in spatial econometrics, the choice of spatial weights remains exogenously determined by the researcher in empirical applications. Bayesian techniques provide statistical eviden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Review of regional studies 2010-01, Vol.40 (3), p.245-255
Hauptverfasser: Loomis, John B, Mueller, Julie M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 255
container_issue 3
container_start_page 245
container_title The Review of regional studies
container_volume 40
creator Loomis, John B
Mueller, Julie M
description The choice of weights is a non-nested problem in most applied spatial econometric models. Despite numerous recent advances in spatial econometrics, the choice of spatial weights remains exogenously determined by the researcher in empirical applications. Bayesian techniques provide statistical evidence regarding the simultaneous choice of model specification and spatial weights matrices by using posterior probabilities. This paper demonstrates the Bayesian estimation approach in a spatial hedonic property model estimating the impacts of repeated wildfires on house prices in Southern California. We find that improper choice of spatial model and weights can result in up to 5% difference in estimated coefficients and in our case study up to a $15 Million difference in total benefits of reducing wildfires in Los Angeles County.
doi_str_mv 10.52324/001c.8175
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1690846095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3724621051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-c7730626ba2489f4b04e54b8626289267f04b2ac09e9ff557434e34b45894cce3</originalsourceid><addsrcrecordid>eNo9kE1P3DAQhi3USmxpL_0FlrghhU7scT640RUtIFArAWpvlmMmxGg3Tm1v1fz7Oizt4R3b42dGMy9jH0s4VUIK_ARQ2tOmrNUBW5VKyQKaVrxhKwBsihrbn4fsXYzPAFAJqFYsfDYzRWfGyN3I7yZj6Yw_RDc-8X8__JbS4B8jT55fjb0PW74evLPEfb9UJGc2_Ae5pyFFfmtScH-WXpf06Edn-ffgJwpp5uej2cyR4nv2tjebSB9ezyP28OXifn1Z3Hz7erU-vyksiioVtq5lHrLqjMCm7bEDJIVdk1Mi71TVPWAnjIWW2r5XqkaJJLFD1bRoLckjdrzvOwX_a0cx6We_C3mIqMuqhQYraFWmTvaUDT7GQL2egtuaMOsS9IunevFUL55m-HoPB5rI_idDfu66TRz0by0NQg5zloByubosmTUtKVRaKKWHtJV_AQwsgWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1690846095</pqid></control><display><type>article</type><title>Bayesians in Space: Using Bayesian Methods to Inform Choice of Spatial Weights Matrix in Hedonic Property Analyses</title><source>RePEc</source><source>EBSCOhost Education Source</source><source>Alma/SFX Local Collection</source><creator>Loomis, John B ; Mueller, Julie M</creator><creatorcontrib>Loomis, John B ; Mueller, Julie M</creatorcontrib><description>The choice of weights is a non-nested problem in most applied spatial econometric models. Despite numerous recent advances in spatial econometrics, the choice of spatial weights remains exogenously determined by the researcher in empirical applications. Bayesian techniques provide statistical evidence regarding the simultaneous choice of model specification and spatial weights matrices by using posterior probabilities. This paper demonstrates the Bayesian estimation approach in a spatial hedonic property model estimating the impacts of repeated wildfires on house prices in Southern California. We find that improper choice of spatial model and weights can result in up to 5% difference in estimated coefficients and in our case study up to a $15 Million difference in total benefits of reducing wildfires in Los Angeles County.</description><identifier>ISSN: 0048-749X</identifier><identifier>EISSN: 1553-0892</identifier><identifier>DOI: 10.52324/001c.8175</identifier><language>eng</language><publisher>New Brunswick: Southern Regional Science Association</publisher><subject>Bayesian analysis ; Bayesian Estimation ; Demographics ; Dependent variables ; Econometrics ; Economic models ; Estimates ; Housing prices ; Landscape ecology ; Regional studies ; Spatial Hedonic Models ; Studies ; Variables ; Wildfires</subject><ispartof>The Review of regional studies, 2010-01, Vol.40 (3), p.245-255</ispartof><rights>Copyright Southern Regional Science Association 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-c7730626ba2489f4b04e54b8626289267f04b2ac09e9ff557434e34b45894cce3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4006,27923,27924</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/rrepublsh/v_3a40_3ay_3a2010_3ai_3a3_3ap_3a245-255.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Loomis, John B</creatorcontrib><creatorcontrib>Mueller, Julie M</creatorcontrib><title>Bayesians in Space: Using Bayesian Methods to Inform Choice of Spatial Weights Matrix in Hedonic Property Analyses</title><title>The Review of regional studies</title><description>The choice of weights is a non-nested problem in most applied spatial econometric models. Despite numerous recent advances in spatial econometrics, the choice of spatial weights remains exogenously determined by the researcher in empirical applications. Bayesian techniques provide statistical evidence regarding the simultaneous choice of model specification and spatial weights matrices by using posterior probabilities. This paper demonstrates the Bayesian estimation approach in a spatial hedonic property model estimating the impacts of repeated wildfires on house prices in Southern California. We find that improper choice of spatial model and weights can result in up to 5% difference in estimated coefficients and in our case study up to a $15 Million difference in total benefits of reducing wildfires in Los Angeles County.</description><subject>Bayesian analysis</subject><subject>Bayesian Estimation</subject><subject>Demographics</subject><subject>Dependent variables</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Estimates</subject><subject>Housing prices</subject><subject>Landscape ecology</subject><subject>Regional studies</subject><subject>Spatial Hedonic Models</subject><subject>Studies</subject><subject>Variables</subject><subject>Wildfires</subject><issn>0048-749X</issn><issn>1553-0892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kE1P3DAQhi3USmxpL_0FlrghhU7scT640RUtIFArAWpvlmMmxGg3Tm1v1fz7Oizt4R3b42dGMy9jH0s4VUIK_ARQ2tOmrNUBW5VKyQKaVrxhKwBsihrbn4fsXYzPAFAJqFYsfDYzRWfGyN3I7yZj6Yw_RDc-8X8__JbS4B8jT55fjb0PW74evLPEfb9UJGc2_Ae5pyFFfmtScH-WXpf06Edn-ffgJwpp5uej2cyR4nv2tjebSB9ezyP28OXifn1Z3Hz7erU-vyksiioVtq5lHrLqjMCm7bEDJIVdk1Mi71TVPWAnjIWW2r5XqkaJJLFD1bRoLckjdrzvOwX_a0cx6We_C3mIqMuqhQYraFWmTvaUDT7GQL2egtuaMOsS9IunevFUL55m-HoPB5rI_idDfu66TRz0by0NQg5zloByubosmTUtKVRaKKWHtJV_AQwsgWo</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Loomis, John B</creator><creator>Mueller, Julie M</creator><general>Southern Regional Science Association</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M2P</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20100101</creationdate><title>Bayesians in Space: Using Bayesian Methods to Inform Choice of Spatial Weights Matrix in Hedonic Property Analyses</title><author>Loomis, John B ; Mueller, Julie M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-c7730626ba2489f4b04e54b8626289267f04b2ac09e9ff557434e34b45894cce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bayesian analysis</topic><topic>Bayesian Estimation</topic><topic>Demographics</topic><topic>Dependent variables</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Estimates</topic><topic>Housing prices</topic><topic>Landscape ecology</topic><topic>Regional studies</topic><topic>Spatial Hedonic Models</topic><topic>Studies</topic><topic>Variables</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loomis, John B</creatorcontrib><creatorcontrib>Mueller, Julie M</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>The Review of regional studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loomis, John B</au><au>Mueller, Julie M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesians in Space: Using Bayesian Methods to Inform Choice of Spatial Weights Matrix in Hedonic Property Analyses</atitle><jtitle>The Review of regional studies</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>40</volume><issue>3</issue><spage>245</spage><epage>255</epage><pages>245-255</pages><issn>0048-749X</issn><eissn>1553-0892</eissn><abstract>The choice of weights is a non-nested problem in most applied spatial econometric models. Despite numerous recent advances in spatial econometrics, the choice of spatial weights remains exogenously determined by the researcher in empirical applications. Bayesian techniques provide statistical evidence regarding the simultaneous choice of model specification and spatial weights matrices by using posterior probabilities. This paper demonstrates the Bayesian estimation approach in a spatial hedonic property model estimating the impacts of repeated wildfires on house prices in Southern California. We find that improper choice of spatial model and weights can result in up to 5% difference in estimated coefficients and in our case study up to a $15 Million difference in total benefits of reducing wildfires in Los Angeles County.</abstract><cop>New Brunswick</cop><pub>Southern Regional Science Association</pub><doi>10.52324/001c.8175</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0048-749X
ispartof The Review of regional studies, 2010-01, Vol.40 (3), p.245-255
issn 0048-749X
1553-0892
language eng
recordid cdi_proquest_journals_1690846095
source RePEc; EBSCOhost Education Source; Alma/SFX Local Collection
subjects Bayesian analysis
Bayesian Estimation
Demographics
Dependent variables
Econometrics
Economic models
Estimates
Housing prices
Landscape ecology
Regional studies
Spatial Hedonic Models
Studies
Variables
Wildfires
title Bayesians in Space: Using Bayesian Methods to Inform Choice of Spatial Weights Matrix in Hedonic Property Analyses
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesians%20in%20Space:%20Using%20Bayesian%20Methods%20to%20Inform%20Choice%20of%20Spatial%20Weights%20Matrix%20in%20Hedonic%20Property%20Analyses&rft.jtitle=The%20Review%20of%20regional%20studies&rft.au=Loomis,%20John%20B&rft.date=2010-01-01&rft.volume=40&rft.issue=3&rft.spage=245&rft.epage=255&rft.pages=245-255&rft.issn=0048-749X&rft.eissn=1553-0892&rft_id=info:doi/10.52324/001c.8175&rft_dat=%3Cproquest_cross%3E3724621051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1690846095&rft_id=info:pmid/&rfr_iscdi=true