Bayesians in Space: Using Bayesian Methods to Inform Choice of Spatial Weights Matrix in Hedonic Property Analyses
The choice of weights is a non-nested problem in most applied spatial econometric models. Despite numerous recent advances in spatial econometrics, the choice of spatial weights remains exogenously determined by the researcher in empirical applications. Bayesian techniques provide statistical eviden...
Gespeichert in:
Veröffentlicht in: | The Review of regional studies 2010-01, Vol.40 (3), p.245-255 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 255 |
---|---|
container_issue | 3 |
container_start_page | 245 |
container_title | The Review of regional studies |
container_volume | 40 |
creator | Loomis, John B Mueller, Julie M |
description | The choice of weights is a non-nested problem in most applied spatial econometric models. Despite numerous recent advances in spatial econometrics, the choice of spatial weights remains exogenously determined by the researcher in empirical applications. Bayesian techniques provide statistical evidence regarding the simultaneous choice of model specification and spatial weights matrices by using posterior probabilities. This paper demonstrates the Bayesian estimation approach in a spatial hedonic property model estimating the impacts of repeated wildfires on house prices in Southern California. We find that improper choice of spatial model and weights can result in up to 5% difference in estimated coefficients and in our case study up to a $15 Million difference in total benefits of reducing wildfires in Los Angeles County. |
doi_str_mv | 10.52324/001c.8175 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1690846095</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3724621051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-c7730626ba2489f4b04e54b8626289267f04b2ac09e9ff557434e34b45894cce3</originalsourceid><addsrcrecordid>eNo9kE1P3DAQhi3USmxpL_0FlrghhU7scT640RUtIFArAWpvlmMmxGg3Tm1v1fz7Oizt4R3b42dGMy9jH0s4VUIK_ARQ2tOmrNUBW5VKyQKaVrxhKwBsihrbn4fsXYzPAFAJqFYsfDYzRWfGyN3I7yZj6Yw_RDc-8X8__JbS4B8jT55fjb0PW74evLPEfb9UJGc2_Ae5pyFFfmtScH-WXpf06Edn-ffgJwpp5uej2cyR4nv2tjebSB9ezyP28OXifn1Z3Hz7erU-vyksiioVtq5lHrLqjMCm7bEDJIVdk1Mi71TVPWAnjIWW2r5XqkaJJLFD1bRoLckjdrzvOwX_a0cx6We_C3mIqMuqhQYraFWmTvaUDT7GQL2egtuaMOsS9IunevFUL55m-HoPB5rI_idDfu66TRz0by0NQg5zloByubosmTUtKVRaKKWHtJV_AQwsgWo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1690846095</pqid></control><display><type>article</type><title>Bayesians in Space: Using Bayesian Methods to Inform Choice of Spatial Weights Matrix in Hedonic Property Analyses</title><source>RePEc</source><source>EBSCOhost Education Source</source><source>Alma/SFX Local Collection</source><creator>Loomis, John B ; Mueller, Julie M</creator><creatorcontrib>Loomis, John B ; Mueller, Julie M</creatorcontrib><description>The choice of weights is a non-nested problem in most applied spatial econometric models. Despite numerous recent advances in spatial econometrics, the choice of spatial weights remains exogenously determined by the researcher in empirical applications. Bayesian techniques provide statistical evidence regarding the simultaneous choice of model specification and spatial weights matrices by using posterior probabilities. This paper demonstrates the Bayesian estimation approach in a spatial hedonic property model estimating the impacts of repeated wildfires on house prices in Southern California. We find that improper choice of spatial model and weights can result in up to 5% difference in estimated coefficients and in our case study up to a $15 Million difference in total benefits of reducing wildfires in Los Angeles County.</description><identifier>ISSN: 0048-749X</identifier><identifier>EISSN: 1553-0892</identifier><identifier>DOI: 10.52324/001c.8175</identifier><language>eng</language><publisher>New Brunswick: Southern Regional Science Association</publisher><subject>Bayesian analysis ; Bayesian Estimation ; Demographics ; Dependent variables ; Econometrics ; Economic models ; Estimates ; Housing prices ; Landscape ecology ; Regional studies ; Spatial Hedonic Models ; Studies ; Variables ; Wildfires</subject><ispartof>The Review of regional studies, 2010-01, Vol.40 (3), p.245-255</ispartof><rights>Copyright Southern Regional Science Association 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-c7730626ba2489f4b04e54b8626289267f04b2ac09e9ff557434e34b45894cce3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4006,27923,27924</link.rule.ids><backlink>$$Uhttp://econpapers.repec.org/article/rrepublsh/v_3a40_3ay_3a2010_3ai_3a3_3ap_3a245-255.htm$$DView record in RePEc$$Hfree_for_read</backlink></links><search><creatorcontrib>Loomis, John B</creatorcontrib><creatorcontrib>Mueller, Julie M</creatorcontrib><title>Bayesians in Space: Using Bayesian Methods to Inform Choice of Spatial Weights Matrix in Hedonic Property Analyses</title><title>The Review of regional studies</title><description>The choice of weights is a non-nested problem in most applied spatial econometric models. Despite numerous recent advances in spatial econometrics, the choice of spatial weights remains exogenously determined by the researcher in empirical applications. Bayesian techniques provide statistical evidence regarding the simultaneous choice of model specification and spatial weights matrices by using posterior probabilities. This paper demonstrates the Bayesian estimation approach in a spatial hedonic property model estimating the impacts of repeated wildfires on house prices in Southern California. We find that improper choice of spatial model and weights can result in up to 5% difference in estimated coefficients and in our case study up to a $15 Million difference in total benefits of reducing wildfires in Los Angeles County.</description><subject>Bayesian analysis</subject><subject>Bayesian Estimation</subject><subject>Demographics</subject><subject>Dependent variables</subject><subject>Econometrics</subject><subject>Economic models</subject><subject>Estimates</subject><subject>Housing prices</subject><subject>Landscape ecology</subject><subject>Regional studies</subject><subject>Spatial Hedonic Models</subject><subject>Studies</subject><subject>Variables</subject><subject>Wildfires</subject><issn>0048-749X</issn><issn>1553-0892</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>X2L</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9kE1P3DAQhi3USmxpL_0FlrghhU7scT640RUtIFArAWpvlmMmxGg3Tm1v1fz7Oizt4R3b42dGMy9jH0s4VUIK_ARQ2tOmrNUBW5VKyQKaVrxhKwBsihrbn4fsXYzPAFAJqFYsfDYzRWfGyN3I7yZj6Yw_RDc-8X8__JbS4B8jT55fjb0PW74evLPEfb9UJGc2_Ae5pyFFfmtScH-WXpf06Edn-ffgJwpp5uej2cyR4nv2tjebSB9ezyP28OXifn1Z3Hz7erU-vyksiioVtq5lHrLqjMCm7bEDJIVdk1Mi71TVPWAnjIWW2r5XqkaJJLFD1bRoLckjdrzvOwX_a0cx6We_C3mIqMuqhQYraFWmTvaUDT7GQL2egtuaMOsS9IunevFUL55m-HoPB5rI_idDfu66TRz0by0NQg5zloByubosmTUtKVRaKKWHtJV_AQwsgWo</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Loomis, John B</creator><creator>Mueller, Julie M</creator><general>Southern Regional Science Association</general><scope>DKI</scope><scope>X2L</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>M2P</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20100101</creationdate><title>Bayesians in Space: Using Bayesian Methods to Inform Choice of Spatial Weights Matrix in Hedonic Property Analyses</title><author>Loomis, John B ; Mueller, Julie M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-c7730626ba2489f4b04e54b8626289267f04b2ac09e9ff557434e34b45894cce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bayesian analysis</topic><topic>Bayesian Estimation</topic><topic>Demographics</topic><topic>Dependent variables</topic><topic>Econometrics</topic><topic>Economic models</topic><topic>Estimates</topic><topic>Housing prices</topic><topic>Landscape ecology</topic><topic>Regional studies</topic><topic>Spatial Hedonic Models</topic><topic>Studies</topic><topic>Variables</topic><topic>Wildfires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Loomis, John B</creatorcontrib><creatorcontrib>Mueller, Julie M</creatorcontrib><collection>RePEc IDEAS</collection><collection>RePEc</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>The Review of regional studies</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Loomis, John B</au><au>Mueller, Julie M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bayesians in Space: Using Bayesian Methods to Inform Choice of Spatial Weights Matrix in Hedonic Property Analyses</atitle><jtitle>The Review of regional studies</jtitle><date>2010-01-01</date><risdate>2010</risdate><volume>40</volume><issue>3</issue><spage>245</spage><epage>255</epage><pages>245-255</pages><issn>0048-749X</issn><eissn>1553-0892</eissn><abstract>The choice of weights is a non-nested problem in most applied spatial econometric models. Despite numerous recent advances in spatial econometrics, the choice of spatial weights remains exogenously determined by the researcher in empirical applications. Bayesian techniques provide statistical evidence regarding the simultaneous choice of model specification and spatial weights matrices by using posterior probabilities. This paper demonstrates the Bayesian estimation approach in a spatial hedonic property model estimating the impacts of repeated wildfires on house prices in Southern California. We find that improper choice of spatial model and weights can result in up to 5% difference in estimated coefficients and in our case study up to a $15 Million difference in total benefits of reducing wildfires in Los Angeles County.</abstract><cop>New Brunswick</cop><pub>Southern Regional Science Association</pub><doi>10.52324/001c.8175</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0048-749X |
ispartof | The Review of regional studies, 2010-01, Vol.40 (3), p.245-255 |
issn | 0048-749X 1553-0892 |
language | eng |
recordid | cdi_proquest_journals_1690846095 |
source | RePEc; EBSCOhost Education Source; Alma/SFX Local Collection |
subjects | Bayesian analysis Bayesian Estimation Demographics Dependent variables Econometrics Economic models Estimates Housing prices Landscape ecology Regional studies Spatial Hedonic Models Studies Variables Wildfires |
title | Bayesians in Space: Using Bayesian Methods to Inform Choice of Spatial Weights Matrix in Hedonic Property Analyses |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A56%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bayesians%20in%20Space:%20Using%20Bayesian%20Methods%20to%20Inform%20Choice%20of%20Spatial%20Weights%20Matrix%20in%20Hedonic%20Property%20Analyses&rft.jtitle=The%20Review%20of%20regional%20studies&rft.au=Loomis,%20John%20B&rft.date=2010-01-01&rft.volume=40&rft.issue=3&rft.spage=245&rft.epage=255&rft.pages=245-255&rft.issn=0048-749X&rft.eissn=1553-0892&rft_id=info:doi/10.52324/001c.8175&rft_dat=%3Cproquest_cross%3E3724621051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1690846095&rft_id=info:pmid/&rfr_iscdi=true |