Thermal Strain in Lightweight Composite Fiber-Optic Gyroscope for Space Application

Thermal strain significantly affects stability of fiber optic gyroscope (FOG) performance. This study investigates thermal strain development in a lightweight carbon fiber-reinforced plastic (CFRP) FOG under thermal vacuum condition simulating space environment. First, we measure thermal strain dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of lightwave technology 2015-06, Vol.33 (12), p.2658-2662
Hauptverfasser: Minakuchi, Shu, Sanada, Teruhisa, Takeda, Nobuo, Mitani, Shinji, Mizutani, Tadahito, Sasaki, Yoshinobu, Shinozaki, Keisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2662
container_issue 12
container_start_page 2658
container_title Journal of lightwave technology
container_volume 33
creator Minakuchi, Shu
Sanada, Teruhisa
Takeda, Nobuo
Mitani, Shinji
Mizutani, Tadahito
Sasaki, Yoshinobu
Shinozaki, Keisuke
description Thermal strain significantly affects stability of fiber optic gyroscope (FOG) performance. This study investigates thermal strain development in a lightweight carbon fiber-reinforced plastic (CFRP) FOG under thermal vacuum condition simulating space environment. First, we measure thermal strain distribution along an optical fiber in a CFRP FOG using a Brillouin-based high-spatial resolution system. The key strain profile is clarified and the strain development is simulated using finite element analysis (FEA) to understand the mechanism of the strain development. Several materials for FOG bobbins are then quantitatively compared using experimentally validated FEA from the aspect of the thermal strain and the weight to illustrate the clear advantage of CFRP. Finally, a hybrid concept combining low thermal conductivity polyacrylonitrile-based (PAN-based) CFRP and high stiffness pitch-based CFRP is proposed to minimize the thermal strain with minimal weight.
doi_str_mv 10.1109/JLT.2014.2375198
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1689800818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6977886</ieee_id><sourcerecordid>1825562786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-4720e32654ba409b1c43ec09c32984c4628da2d65a29367d2301608de831ae6e3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wcuCFy9b87VJ9liKrcpCD63nkGanNmV3syZbpP_elIoHYZiB4Xnn40XonuAJIbh8fq_WE4oJn1AmC1KqCzQiRaFySgm7RCMsGcuVpPwa3cS4x4nkSo7Qar2D0JomWw3BuC5LUbnP3fANp5zNfNv76AbI5m4DIV_2g7PZ4hh8tL6HbOtDtuqNhWza942zZnC-u0VXW9NEuPutY_Qxf1nPXvNquXibTavccsaHnEuKgVFR8I3huNyQ1AaLS8toqbjlgqra0FoUhpZMyJoyTARWNShGDAhgY_R0ntsH_3WAOOjWRQtNYzrwh6iJokUhqFQioY__0L0_hC5dp4lQpcJYEZUofKZs-i8G2Oo-uNaEoyZYn1zWyWV9cln_upwkD2eJA4A_XJRSqrT2B12Bdso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1689800818</pqid></control><display><type>article</type><title>Thermal Strain in Lightweight Composite Fiber-Optic Gyroscope for Space Application</title><source>IEEE Electronic Library (IEL)</source><creator>Minakuchi, Shu ; Sanada, Teruhisa ; Takeda, Nobuo ; Mitani, Shinji ; Mizutani, Tadahito ; Sasaki, Yoshinobu ; Shinozaki, Keisuke</creator><creatorcontrib>Minakuchi, Shu ; Sanada, Teruhisa ; Takeda, Nobuo ; Mitani, Shinji ; Mizutani, Tadahito ; Sasaki, Yoshinobu ; Shinozaki, Keisuke</creatorcontrib><description>Thermal strain significantly affects stability of fiber optic gyroscope (FOG) performance. This study investigates thermal strain development in a lightweight carbon fiber-reinforced plastic (CFRP) FOG under thermal vacuum condition simulating space environment. First, we measure thermal strain distribution along an optical fiber in a CFRP FOG using a Brillouin-based high-spatial resolution system. The key strain profile is clarified and the strain development is simulated using finite element analysis (FEA) to understand the mechanism of the strain development. Several materials for FOG bobbins are then quantitatively compared using experimentally validated FEA from the aspect of the thermal strain and the weight to illustrate the clear advantage of CFRP. Finally, a hybrid concept combining low thermal conductivity polyacrylonitrile-based (PAN-based) CFRP and high stiffness pitch-based CFRP is proposed to minimize the thermal strain with minimal weight.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2014.2375198</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Brillouin scattering ; carbon fiber reinforced plastic ; Carbon fiber reinforced plastics ; Coils ; Fiber optic gyroscopes ; fiber-optic gyroscope ; Finite element analysis ; Finite element method ; Lightweight ; Materials ; Optical fiber sensors ; Optical fibers ; PPP-BOTDA ; Simulation ; Strain ; Temperature measurement ; Thermal conductivity ; Thermal strain ; Weight reduction</subject><ispartof>Journal of lightwave technology, 2015-06, Vol.33 (12), p.2658-2662</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 15, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-4720e32654ba409b1c43ec09c32984c4628da2d65a29367d2301608de831ae6e3</citedby><cites>FETCH-LOGICAL-c434t-4720e32654ba409b1c43ec09c32984c4628da2d65a29367d2301608de831ae6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6977886$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6977886$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Minakuchi, Shu</creatorcontrib><creatorcontrib>Sanada, Teruhisa</creatorcontrib><creatorcontrib>Takeda, Nobuo</creatorcontrib><creatorcontrib>Mitani, Shinji</creatorcontrib><creatorcontrib>Mizutani, Tadahito</creatorcontrib><creatorcontrib>Sasaki, Yoshinobu</creatorcontrib><creatorcontrib>Shinozaki, Keisuke</creatorcontrib><title>Thermal Strain in Lightweight Composite Fiber-Optic Gyroscope for Space Application</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Thermal strain significantly affects stability of fiber optic gyroscope (FOG) performance. This study investigates thermal strain development in a lightweight carbon fiber-reinforced plastic (CFRP) FOG under thermal vacuum condition simulating space environment. First, we measure thermal strain distribution along an optical fiber in a CFRP FOG using a Brillouin-based high-spatial resolution system. The key strain profile is clarified and the strain development is simulated using finite element analysis (FEA) to understand the mechanism of the strain development. Several materials for FOG bobbins are then quantitatively compared using experimentally validated FEA from the aspect of the thermal strain and the weight to illustrate the clear advantage of CFRP. Finally, a hybrid concept combining low thermal conductivity polyacrylonitrile-based (PAN-based) CFRP and high stiffness pitch-based CFRP is proposed to minimize the thermal strain with minimal weight.</description><subject>Brillouin scattering</subject><subject>carbon fiber reinforced plastic</subject><subject>Carbon fiber reinforced plastics</subject><subject>Coils</subject><subject>Fiber optic gyroscopes</subject><subject>fiber-optic gyroscope</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Lightweight</subject><subject>Materials</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>PPP-BOTDA</subject><subject>Simulation</subject><subject>Strain</subject><subject>Temperature measurement</subject><subject>Thermal conductivity</subject><subject>Thermal strain</subject><subject>Weight reduction</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKt3wcuCFy9b87VJ9liKrcpCD63nkGanNmV3syZbpP_elIoHYZiB4Xnn40XonuAJIbh8fq_WE4oJn1AmC1KqCzQiRaFySgm7RCMsGcuVpPwa3cS4x4nkSo7Qar2D0JomWw3BuC5LUbnP3fANp5zNfNv76AbI5m4DIV_2g7PZ4hh8tL6HbOtDtuqNhWza942zZnC-u0VXW9NEuPutY_Qxf1nPXvNquXibTavccsaHnEuKgVFR8I3huNyQ1AaLS8toqbjlgqra0FoUhpZMyJoyTARWNShGDAhgY_R0ntsH_3WAOOjWRQtNYzrwh6iJokUhqFQioY__0L0_hC5dp4lQpcJYEZUofKZs-i8G2Oo-uNaEoyZYn1zWyWV9cln_upwkD2eJA4A_XJRSqrT2B12Bdso</recordid><startdate>20150615</startdate><enddate>20150615</enddate><creator>Minakuchi, Shu</creator><creator>Sanada, Teruhisa</creator><creator>Takeda, Nobuo</creator><creator>Mitani, Shinji</creator><creator>Mizutani, Tadahito</creator><creator>Sasaki, Yoshinobu</creator><creator>Shinozaki, Keisuke</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150615</creationdate><title>Thermal Strain in Lightweight Composite Fiber-Optic Gyroscope for Space Application</title><author>Minakuchi, Shu ; Sanada, Teruhisa ; Takeda, Nobuo ; Mitani, Shinji ; Mizutani, Tadahito ; Sasaki, Yoshinobu ; Shinozaki, Keisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-4720e32654ba409b1c43ec09c32984c4628da2d65a29367d2301608de831ae6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Brillouin scattering</topic><topic>carbon fiber reinforced plastic</topic><topic>Carbon fiber reinforced plastics</topic><topic>Coils</topic><topic>Fiber optic gyroscopes</topic><topic>fiber-optic gyroscope</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Lightweight</topic><topic>Materials</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>PPP-BOTDA</topic><topic>Simulation</topic><topic>Strain</topic><topic>Temperature measurement</topic><topic>Thermal conductivity</topic><topic>Thermal strain</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minakuchi, Shu</creatorcontrib><creatorcontrib>Sanada, Teruhisa</creatorcontrib><creatorcontrib>Takeda, Nobuo</creatorcontrib><creatorcontrib>Mitani, Shinji</creatorcontrib><creatorcontrib>Mizutani, Tadahito</creatorcontrib><creatorcontrib>Sasaki, Yoshinobu</creatorcontrib><creatorcontrib>Shinozaki, Keisuke</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Minakuchi, Shu</au><au>Sanada, Teruhisa</au><au>Takeda, Nobuo</au><au>Mitani, Shinji</au><au>Mizutani, Tadahito</au><au>Sasaki, Yoshinobu</au><au>Shinozaki, Keisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Strain in Lightweight Composite Fiber-Optic Gyroscope for Space Application</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2015-06-15</date><risdate>2015</risdate><volume>33</volume><issue>12</issue><spage>2658</spage><epage>2662</epage><pages>2658-2662</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Thermal strain significantly affects stability of fiber optic gyroscope (FOG) performance. This study investigates thermal strain development in a lightweight carbon fiber-reinforced plastic (CFRP) FOG under thermal vacuum condition simulating space environment. First, we measure thermal strain distribution along an optical fiber in a CFRP FOG using a Brillouin-based high-spatial resolution system. The key strain profile is clarified and the strain development is simulated using finite element analysis (FEA) to understand the mechanism of the strain development. Several materials for FOG bobbins are then quantitatively compared using experimentally validated FEA from the aspect of the thermal strain and the weight to illustrate the clear advantage of CFRP. Finally, a hybrid concept combining low thermal conductivity polyacrylonitrile-based (PAN-based) CFRP and high stiffness pitch-based CFRP is proposed to minimize the thermal strain with minimal weight.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2014.2375198</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8724
ispartof Journal of lightwave technology, 2015-06, Vol.33 (12), p.2658-2662
issn 0733-8724
1558-2213
language eng
recordid cdi_proquest_journals_1689800818
source IEEE Electronic Library (IEL)
subjects Brillouin scattering
carbon fiber reinforced plastic
Carbon fiber reinforced plastics
Coils
Fiber optic gyroscopes
fiber-optic gyroscope
Finite element analysis
Finite element method
Lightweight
Materials
Optical fiber sensors
Optical fibers
PPP-BOTDA
Simulation
Strain
Temperature measurement
Thermal conductivity
Thermal strain
Weight reduction
title Thermal Strain in Lightweight Composite Fiber-Optic Gyroscope for Space Application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Strain%20in%20Lightweight%20Composite%20Fiber-Optic%20Gyroscope%20for%20Space%20Application&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Minakuchi,%20Shu&rft.date=2015-06-15&rft.volume=33&rft.issue=12&rft.spage=2658&rft.epage=2662&rft.pages=2658-2662&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2014.2375198&rft_dat=%3Cproquest_RIE%3E1825562786%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1689800818&rft_id=info:pmid/&rft_ieee_id=6977886&rfr_iscdi=true