Thermal Strain in Lightweight Composite Fiber-Optic Gyroscope for Space Application
Thermal strain significantly affects stability of fiber optic gyroscope (FOG) performance. This study investigates thermal strain development in a lightweight carbon fiber-reinforced plastic (CFRP) FOG under thermal vacuum condition simulating space environment. First, we measure thermal strain dist...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2015-06, Vol.33 (12), p.2658-2662 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2662 |
---|---|
container_issue | 12 |
container_start_page | 2658 |
container_title | Journal of lightwave technology |
container_volume | 33 |
creator | Minakuchi, Shu Sanada, Teruhisa Takeda, Nobuo Mitani, Shinji Mizutani, Tadahito Sasaki, Yoshinobu Shinozaki, Keisuke |
description | Thermal strain significantly affects stability of fiber optic gyroscope (FOG) performance. This study investigates thermal strain development in a lightweight carbon fiber-reinforced plastic (CFRP) FOG under thermal vacuum condition simulating space environment. First, we measure thermal strain distribution along an optical fiber in a CFRP FOG using a Brillouin-based high-spatial resolution system. The key strain profile is clarified and the strain development is simulated using finite element analysis (FEA) to understand the mechanism of the strain development. Several materials for FOG bobbins are then quantitatively compared using experimentally validated FEA from the aspect of the thermal strain and the weight to illustrate the clear advantage of CFRP. Finally, a hybrid concept combining low thermal conductivity polyacrylonitrile-based (PAN-based) CFRP and high stiffness pitch-based CFRP is proposed to minimize the thermal strain with minimal weight. |
doi_str_mv | 10.1109/JLT.2014.2375198 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1689800818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6977886</ieee_id><sourcerecordid>1825562786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-4720e32654ba409b1c43ec09c32984c4628da2d65a29367d2301608de831ae6e3</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoWKt3wcuCFy9b87VJ9liKrcpCD63nkGanNmV3syZbpP_elIoHYZiB4Xnn40XonuAJIbh8fq_WE4oJn1AmC1KqCzQiRaFySgm7RCMsGcuVpPwa3cS4x4nkSo7Qar2D0JomWw3BuC5LUbnP3fANp5zNfNv76AbI5m4DIV_2g7PZ4hh8tL6HbOtDtuqNhWza942zZnC-u0VXW9NEuPutY_Qxf1nPXvNquXibTavccsaHnEuKgVFR8I3huNyQ1AaLS8toqbjlgqra0FoUhpZMyJoyTARWNShGDAhgY_R0ntsH_3WAOOjWRQtNYzrwh6iJokUhqFQioY__0L0_hC5dp4lQpcJYEZUofKZs-i8G2Oo-uNaEoyZYn1zWyWV9cln_upwkD2eJA4A_XJRSqrT2B12Bdso</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1689800818</pqid></control><display><type>article</type><title>Thermal Strain in Lightweight Composite Fiber-Optic Gyroscope for Space Application</title><source>IEEE Electronic Library (IEL)</source><creator>Minakuchi, Shu ; Sanada, Teruhisa ; Takeda, Nobuo ; Mitani, Shinji ; Mizutani, Tadahito ; Sasaki, Yoshinobu ; Shinozaki, Keisuke</creator><creatorcontrib>Minakuchi, Shu ; Sanada, Teruhisa ; Takeda, Nobuo ; Mitani, Shinji ; Mizutani, Tadahito ; Sasaki, Yoshinobu ; Shinozaki, Keisuke</creatorcontrib><description>Thermal strain significantly affects stability of fiber optic gyroscope (FOG) performance. This study investigates thermal strain development in a lightweight carbon fiber-reinforced plastic (CFRP) FOG under thermal vacuum condition simulating space environment. First, we measure thermal strain distribution along an optical fiber in a CFRP FOG using a Brillouin-based high-spatial resolution system. The key strain profile is clarified and the strain development is simulated using finite element analysis (FEA) to understand the mechanism of the strain development. Several materials for FOG bobbins are then quantitatively compared using experimentally validated FEA from the aspect of the thermal strain and the weight to illustrate the clear advantage of CFRP. Finally, a hybrid concept combining low thermal conductivity polyacrylonitrile-based (PAN-based) CFRP and high stiffness pitch-based CFRP is proposed to minimize the thermal strain with minimal weight.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2014.2375198</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Brillouin scattering ; carbon fiber reinforced plastic ; Carbon fiber reinforced plastics ; Coils ; Fiber optic gyroscopes ; fiber-optic gyroscope ; Finite element analysis ; Finite element method ; Lightweight ; Materials ; Optical fiber sensors ; Optical fibers ; PPP-BOTDA ; Simulation ; Strain ; Temperature measurement ; Thermal conductivity ; Thermal strain ; Weight reduction</subject><ispartof>Journal of lightwave technology, 2015-06, Vol.33 (12), p.2658-2662</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 15, 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-4720e32654ba409b1c43ec09c32984c4628da2d65a29367d2301608de831ae6e3</citedby><cites>FETCH-LOGICAL-c434t-4720e32654ba409b1c43ec09c32984c4628da2d65a29367d2301608de831ae6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6977886$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6977886$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Minakuchi, Shu</creatorcontrib><creatorcontrib>Sanada, Teruhisa</creatorcontrib><creatorcontrib>Takeda, Nobuo</creatorcontrib><creatorcontrib>Mitani, Shinji</creatorcontrib><creatorcontrib>Mizutani, Tadahito</creatorcontrib><creatorcontrib>Sasaki, Yoshinobu</creatorcontrib><creatorcontrib>Shinozaki, Keisuke</creatorcontrib><title>Thermal Strain in Lightweight Composite Fiber-Optic Gyroscope for Space Application</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>Thermal strain significantly affects stability of fiber optic gyroscope (FOG) performance. This study investigates thermal strain development in a lightweight carbon fiber-reinforced plastic (CFRP) FOG under thermal vacuum condition simulating space environment. First, we measure thermal strain distribution along an optical fiber in a CFRP FOG using a Brillouin-based high-spatial resolution system. The key strain profile is clarified and the strain development is simulated using finite element analysis (FEA) to understand the mechanism of the strain development. Several materials for FOG bobbins are then quantitatively compared using experimentally validated FEA from the aspect of the thermal strain and the weight to illustrate the clear advantage of CFRP. Finally, a hybrid concept combining low thermal conductivity polyacrylonitrile-based (PAN-based) CFRP and high stiffness pitch-based CFRP is proposed to minimize the thermal strain with minimal weight.</description><subject>Brillouin scattering</subject><subject>carbon fiber reinforced plastic</subject><subject>Carbon fiber reinforced plastics</subject><subject>Coils</subject><subject>Fiber optic gyroscopes</subject><subject>fiber-optic gyroscope</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Lightweight</subject><subject>Materials</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>PPP-BOTDA</subject><subject>Simulation</subject><subject>Strain</subject><subject>Temperature measurement</subject><subject>Thermal conductivity</subject><subject>Thermal strain</subject><subject>Weight reduction</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1LAzEQhoMoWKt3wcuCFy9b87VJ9liKrcpCD63nkGanNmV3syZbpP_elIoHYZiB4Xnn40XonuAJIbh8fq_WE4oJn1AmC1KqCzQiRaFySgm7RCMsGcuVpPwa3cS4x4nkSo7Qar2D0JomWw3BuC5LUbnP3fANp5zNfNv76AbI5m4DIV_2g7PZ4hh8tL6HbOtDtuqNhWza942zZnC-u0VXW9NEuPutY_Qxf1nPXvNquXibTavccsaHnEuKgVFR8I3huNyQ1AaLS8toqbjlgqra0FoUhpZMyJoyTARWNShGDAhgY_R0ntsH_3WAOOjWRQtNYzrwh6iJokUhqFQioY__0L0_hC5dp4lQpcJYEZUofKZs-i8G2Oo-uNaEoyZYn1zWyWV9cln_upwkD2eJA4A_XJRSqrT2B12Bdso</recordid><startdate>20150615</startdate><enddate>20150615</enddate><creator>Minakuchi, Shu</creator><creator>Sanada, Teruhisa</creator><creator>Takeda, Nobuo</creator><creator>Mitani, Shinji</creator><creator>Mizutani, Tadahito</creator><creator>Sasaki, Yoshinobu</creator><creator>Shinozaki, Keisuke</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20150615</creationdate><title>Thermal Strain in Lightweight Composite Fiber-Optic Gyroscope for Space Application</title><author>Minakuchi, Shu ; Sanada, Teruhisa ; Takeda, Nobuo ; Mitani, Shinji ; Mizutani, Tadahito ; Sasaki, Yoshinobu ; Shinozaki, Keisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-4720e32654ba409b1c43ec09c32984c4628da2d65a29367d2301608de831ae6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Brillouin scattering</topic><topic>carbon fiber reinforced plastic</topic><topic>Carbon fiber reinforced plastics</topic><topic>Coils</topic><topic>Fiber optic gyroscopes</topic><topic>fiber-optic gyroscope</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Lightweight</topic><topic>Materials</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>PPP-BOTDA</topic><topic>Simulation</topic><topic>Strain</topic><topic>Temperature measurement</topic><topic>Thermal conductivity</topic><topic>Thermal strain</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minakuchi, Shu</creatorcontrib><creatorcontrib>Sanada, Teruhisa</creatorcontrib><creatorcontrib>Takeda, Nobuo</creatorcontrib><creatorcontrib>Mitani, Shinji</creatorcontrib><creatorcontrib>Mizutani, Tadahito</creatorcontrib><creatorcontrib>Sasaki, Yoshinobu</creatorcontrib><creatorcontrib>Shinozaki, Keisuke</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Minakuchi, Shu</au><au>Sanada, Teruhisa</au><au>Takeda, Nobuo</au><au>Mitani, Shinji</au><au>Mizutani, Tadahito</au><au>Sasaki, Yoshinobu</au><au>Shinozaki, Keisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal Strain in Lightweight Composite Fiber-Optic Gyroscope for Space Application</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2015-06-15</date><risdate>2015</risdate><volume>33</volume><issue>12</issue><spage>2658</spage><epage>2662</epage><pages>2658-2662</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>Thermal strain significantly affects stability of fiber optic gyroscope (FOG) performance. This study investigates thermal strain development in a lightweight carbon fiber-reinforced plastic (CFRP) FOG under thermal vacuum condition simulating space environment. First, we measure thermal strain distribution along an optical fiber in a CFRP FOG using a Brillouin-based high-spatial resolution system. The key strain profile is clarified and the strain development is simulated using finite element analysis (FEA) to understand the mechanism of the strain development. Several materials for FOG bobbins are then quantitatively compared using experimentally validated FEA from the aspect of the thermal strain and the weight to illustrate the clear advantage of CFRP. Finally, a hybrid concept combining low thermal conductivity polyacrylonitrile-based (PAN-based) CFRP and high stiffness pitch-based CFRP is proposed to minimize the thermal strain with minimal weight.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2014.2375198</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2015-06, Vol.33 (12), p.2658-2662 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_proquest_journals_1689800818 |
source | IEEE Electronic Library (IEL) |
subjects | Brillouin scattering carbon fiber reinforced plastic Carbon fiber reinforced plastics Coils Fiber optic gyroscopes fiber-optic gyroscope Finite element analysis Finite element method Lightweight Materials Optical fiber sensors Optical fibers PPP-BOTDA Simulation Strain Temperature measurement Thermal conductivity Thermal strain Weight reduction |
title | Thermal Strain in Lightweight Composite Fiber-Optic Gyroscope for Space Application |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A37%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20Strain%20in%20Lightweight%20Composite%20Fiber-Optic%20Gyroscope%20for%20Space%20Application&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Minakuchi,%20Shu&rft.date=2015-06-15&rft.volume=33&rft.issue=12&rft.spage=2658&rft.epage=2662&rft.pages=2658-2662&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2014.2375198&rft_dat=%3Cproquest_RIE%3E1825562786%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1689800818&rft_id=info:pmid/&rft_ieee_id=6977886&rfr_iscdi=true |