Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies
Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess th...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-05, Vol.112 (20), p.6277-6282 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6282 |
---|---|
container_issue | 20 |
container_start_page | 6277 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Hertwich, Edgar G. Gibon, Thomas Bouman, Evert A. Arvesen, Anders Suh, Sangwon Heath, Garvin A. Bergesen, Joseph D. Ramirez, Andrea Vega, Mabel I. Shi, Lei |
description | Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11–40 times more copper for photovoltaic systems and 6–14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.
Significance Life-cycle assessments commonly used to analyze the environmental costs and benefits of climate-mitigation options are usually static in nature and address individual power plants. Our paper presents, to our knowledge, the first life-cycle assessment of the large-scale implementation of climate-mitigation technologies, addressing the feedback of the electricity system onto itself and using scenario-consistent assumptions of technical improvements in key energy and material production technologies. |
doi_str_mv | 10.1073/pnas.1312753111 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1685414799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26462807</jstor_id><sourcerecordid>26462807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c650t-a5b26e4c587368dc88a3da350fb76e718e8941cec884dd92c157c9fcd4a64b633</originalsourceid><addsrcrecordid>eNqNkjtvFDEUhUcIREKgpgJG0NBMcv32NJFQxCNSJApIbXk8dzZeee3Fng3akn-Ol10SoKKyrPvdY5-j0zTPCZwSUOxsHW05JYxQJRgh5EFzTKAnneQ9PGyOAajqNKf8qHlSyhIAeqHhcXNEBdVacXLc_LiMMy6ynXFsg5-wc1sXsLWlYCkrjHObphYDujl75-dtVzbrddi2xWG02afSuhQnn1elXYQ02NBivPU5xd1uvQ0YcfK_VEL63jmbhxTbGd1NTCEtPJanzaPJhoLPDudJc_3h_deLT93V54-XF--uOicFzJ0VA5XIndCKST06rS0bLRMwDUqiIhp1z4nDOuDj2FNHhHL95EZuJR8kYyfN-V53vRlWONb_z9kGs85-ZfPWJOvN35Pob8wi3RrOOWN8J_B6L5DK7E2paVQX1X2s4RhCKYieVujt4ZWcvm2wzGbla1Yh2IhpUwzRwAgwLf8DVSBA0B5ERd_8gy7TJscalyFSC0646vtKne0pl1MpGac7cwTMri5mVxdzX5e68fLPTO743_2owKsDsNu8kyPUUDCSKlWJF3tiWeaU7xUkl1SDuleYbDJ2kX0x118oEAlAakuBs5_E0ttu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685414799</pqid></control><display><type>article</type><title>Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hertwich, Edgar G. ; Gibon, Thomas ; Bouman, Evert A. ; Arvesen, Anders ; Suh, Sangwon ; Heath, Garvin A. ; Bergesen, Joseph D. ; Ramirez, Andrea ; Vega, Mabel I. ; Shi, Lei</creator><creatorcontrib>Hertwich, Edgar G. ; Gibon, Thomas ; Bouman, Evert A. ; Arvesen, Anders ; Suh, Sangwon ; Heath, Garvin A. ; Bergesen, Joseph D. ; Ramirez, Andrea ; Vega, Mabel I. ; Shi, Lei ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11–40 times more copper for photovoltaic systems and 6–14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.
Significance Life-cycle assessments commonly used to analyze the environmental costs and benefits of climate-mitigation options are usually static in nature and address individual power plants. Our paper presents, to our knowledge, the first life-cycle assessment of the large-scale implementation of climate-mitigation technologies, addressing the feedback of the electricity system onto itself and using scenario-consistent assumptions of technical improvements in key energy and material production technologies.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1312753111</identifier><identifier>PMID: 25288741</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>air pollution ; Carbon Dioxide - chemistry ; Clean technology ; Climate change ; co-benefits of climate change mitigation ; CO2 capture and storage ; concentrating solar power ; Copper - chemistry ; Electric power plants ; Electric Power Supplies - economics ; electricity ; Electricity generation ; Emissions control ; emissions scenarios ; energy ; ENERGY PLANNING, POLICY, AND ECONOMY ; Energy systems ; Environmental Pollutants - economics ; Global Warming - prevention & control ; Humans ; integrated hybrid assessment model ; Iron - chemistry ; land use ; life cycle assessment ; Models, Economic ; photovoltaics ; Physical Sciences ; power plants ; Power supply ; Renewable Energy ; Social Sciences ; SPECIAL FEATURE ; Tradeoff analysis ; wind power</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-05, Vol.112 (20), p.6277-6282</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences May 19, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c650t-a5b26e4c587368dc88a3da350fb76e718e8941cec884dd92c157c9fcd4a64b633</citedby><cites>FETCH-LOGICAL-c650t-a5b26e4c587368dc88a3da350fb76e718e8941cec884dd92c157c9fcd4a64b633</cites><orcidid>0000-0001-8290-6276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/20.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26462807$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26462807$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25288741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1220592$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hertwich, Edgar G.</creatorcontrib><creatorcontrib>Gibon, Thomas</creatorcontrib><creatorcontrib>Bouman, Evert A.</creatorcontrib><creatorcontrib>Arvesen, Anders</creatorcontrib><creatorcontrib>Suh, Sangwon</creatorcontrib><creatorcontrib>Heath, Garvin A.</creatorcontrib><creatorcontrib>Bergesen, Joseph D.</creatorcontrib><creatorcontrib>Ramirez, Andrea</creatorcontrib><creatorcontrib>Vega, Mabel I.</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11–40 times more copper for photovoltaic systems and 6–14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.
Significance Life-cycle assessments commonly used to analyze the environmental costs and benefits of climate-mitigation options are usually static in nature and address individual power plants. Our paper presents, to our knowledge, the first life-cycle assessment of the large-scale implementation of climate-mitigation technologies, addressing the feedback of the electricity system onto itself and using scenario-consistent assumptions of technical improvements in key energy and material production technologies.</description><subject>air pollution</subject><subject>Carbon Dioxide - chemistry</subject><subject>Clean technology</subject><subject>Climate change</subject><subject>co-benefits of climate change mitigation</subject><subject>CO2 capture and storage</subject><subject>concentrating solar power</subject><subject>Copper - chemistry</subject><subject>Electric power plants</subject><subject>Electric Power Supplies - economics</subject><subject>electricity</subject><subject>Electricity generation</subject><subject>Emissions control</subject><subject>emissions scenarios</subject><subject>energy</subject><subject>ENERGY PLANNING, POLICY, AND ECONOMY</subject><subject>Energy systems</subject><subject>Environmental Pollutants - economics</subject><subject>Global Warming - prevention & control</subject><subject>Humans</subject><subject>integrated hybrid assessment model</subject><subject>Iron - chemistry</subject><subject>land use</subject><subject>life cycle assessment</subject><subject>Models, Economic</subject><subject>photovoltaics</subject><subject>Physical Sciences</subject><subject>power plants</subject><subject>Power supply</subject><subject>Renewable Energy</subject><subject>Social Sciences</subject><subject>SPECIAL FEATURE</subject><subject>Tradeoff analysis</subject><subject>wind power</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkjtvFDEUhUcIREKgpgJG0NBMcv32NJFQxCNSJApIbXk8dzZeee3Fng3akn-Ol10SoKKyrPvdY5-j0zTPCZwSUOxsHW05JYxQJRgh5EFzTKAnneQ9PGyOAajqNKf8qHlSyhIAeqHhcXNEBdVacXLc_LiMMy6ynXFsg5-wc1sXsLWlYCkrjHObphYDujl75-dtVzbrddi2xWG02afSuhQnn1elXYQ02NBivPU5xd1uvQ0YcfK_VEL63jmbhxTbGd1NTCEtPJanzaPJhoLPDudJc_3h_deLT93V54-XF--uOicFzJ0VA5XIndCKST06rS0bLRMwDUqiIhp1z4nDOuDj2FNHhHL95EZuJR8kYyfN-V53vRlWONb_z9kGs85-ZfPWJOvN35Pob8wi3RrOOWN8J_B6L5DK7E2paVQX1X2s4RhCKYieVujt4ZWcvm2wzGbla1Yh2IhpUwzRwAgwLf8DVSBA0B5ERd_8gy7TJscalyFSC0646vtKne0pl1MpGac7cwTMri5mVxdzX5e68fLPTO743_2owKsDsNu8kyPUUDCSKlWJF3tiWeaU7xUkl1SDuleYbDJ2kX0x118oEAlAakuBs5_E0ttu</recordid><startdate>20150519</startdate><enddate>20150519</enddate><creator>Hertwich, Edgar G.</creator><creator>Gibon, Thomas</creator><creator>Bouman, Evert A.</creator><creator>Arvesen, Anders</creator><creator>Suh, Sangwon</creator><creator>Heath, Garvin A.</creator><creator>Bergesen, Joseph D.</creator><creator>Ramirez, Andrea</creator><creator>Vega, Mabel I.</creator><creator>Shi, Lei</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8290-6276</orcidid></search><sort><creationdate>20150519</creationdate><title>Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies</title><author>Hertwich, Edgar G. ; Gibon, Thomas ; Bouman, Evert A. ; Arvesen, Anders ; Suh, Sangwon ; Heath, Garvin A. ; Bergesen, Joseph D. ; Ramirez, Andrea ; Vega, Mabel I. ; Shi, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c650t-a5b26e4c587368dc88a3da350fb76e718e8941cec884dd92c157c9fcd4a64b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>air pollution</topic><topic>Carbon Dioxide - chemistry</topic><topic>Clean technology</topic><topic>Climate change</topic><topic>co-benefits of climate change mitigation</topic><topic>CO2 capture and storage</topic><topic>concentrating solar power</topic><topic>Copper - chemistry</topic><topic>Electric power plants</topic><topic>Electric Power Supplies - economics</topic><topic>electricity</topic><topic>Electricity generation</topic><topic>Emissions control</topic><topic>emissions scenarios</topic><topic>energy</topic><topic>ENERGY PLANNING, POLICY, AND ECONOMY</topic><topic>Energy systems</topic><topic>Environmental Pollutants - economics</topic><topic>Global Warming - prevention & control</topic><topic>Humans</topic><topic>integrated hybrid assessment model</topic><topic>Iron - chemistry</topic><topic>land use</topic><topic>life cycle assessment</topic><topic>Models, Economic</topic><topic>photovoltaics</topic><topic>Physical Sciences</topic><topic>power plants</topic><topic>Power supply</topic><topic>Renewable Energy</topic><topic>Social Sciences</topic><topic>SPECIAL FEATURE</topic><topic>Tradeoff analysis</topic><topic>wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hertwich, Edgar G.</creatorcontrib><creatorcontrib>Gibon, Thomas</creatorcontrib><creatorcontrib>Bouman, Evert A.</creatorcontrib><creatorcontrib>Arvesen, Anders</creatorcontrib><creatorcontrib>Suh, Sangwon</creatorcontrib><creatorcontrib>Heath, Garvin A.</creatorcontrib><creatorcontrib>Bergesen, Joseph D.</creatorcontrib><creatorcontrib>Ramirez, Andrea</creatorcontrib><creatorcontrib>Vega, Mabel I.</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hertwich, Edgar G.</au><au>Gibon, Thomas</au><au>Bouman, Evert A.</au><au>Arvesen, Anders</au><au>Suh, Sangwon</au><au>Heath, Garvin A.</au><au>Bergesen, Joseph D.</au><au>Ramirez, Andrea</au><au>Vega, Mabel I.</au><au>Shi, Lei</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-05-19</date><risdate>2015</risdate><volume>112</volume><issue>20</issue><spage>6277</spage><epage>6282</epage><pages>6277-6282</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11–40 times more copper for photovoltaic systems and 6–14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.
Significance Life-cycle assessments commonly used to analyze the environmental costs and benefits of climate-mitigation options are usually static in nature and address individual power plants. Our paper presents, to our knowledge, the first life-cycle assessment of the large-scale implementation of climate-mitigation technologies, addressing the feedback of the electricity system onto itself and using scenario-consistent assumptions of technical improvements in key energy and material production technologies.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25288741</pmid><doi>10.1073/pnas.1312753111</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8290-6276</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-05, Vol.112 (20), p.6277-6282 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_1685414799 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | air pollution Carbon Dioxide - chemistry Clean technology Climate change co-benefits of climate change mitigation CO2 capture and storage concentrating solar power Copper - chemistry Electric power plants Electric Power Supplies - economics electricity Electricity generation Emissions control emissions scenarios energy ENERGY PLANNING, POLICY, AND ECONOMY Energy systems Environmental Pollutants - economics Global Warming - prevention & control Humans integrated hybrid assessment model Iron - chemistry land use life cycle assessment Models, Economic photovoltaics Physical Sciences power plants Power supply Renewable Energy Social Sciences SPECIAL FEATURE Tradeoff analysis wind power |
title | Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20life-cycle%20assessment%20of%20electricity-supply%20scenarios%20confirms%20global%20environmental%20benefit%20of%20low-carbon%20technologies&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hertwich,%20Edgar%20G.&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2015-05-19&rft.volume=112&rft.issue=20&rft.spage=6277&rft.epage=6282&rft.pages=6277-6282&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1312753111&rft_dat=%3Cjstor_proqu%3E26462807%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685414799&rft_id=info:pmid/25288741&rft_jstor_id=26462807&rfr_iscdi=true |