Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies

Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-05, Vol.112 (20), p.6277-6282
Hauptverfasser: Hertwich, Edgar G., Gibon, Thomas, Bouman, Evert A., Arvesen, Anders, Suh, Sangwon, Heath, Garvin A., Bergesen, Joseph D., Ramirez, Andrea, Vega, Mabel I., Shi, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6282
container_issue 20
container_start_page 6277
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Hertwich, Edgar G.
Gibon, Thomas
Bouman, Evert A.
Arvesen, Anders
Suh, Sangwon
Heath, Garvin A.
Bergesen, Joseph D.
Ramirez, Andrea
Vega, Mabel I.
Shi, Lei
description Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11–40 times more copper for photovoltaic systems and 6–14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050. Significance Life-cycle assessments commonly used to analyze the environmental costs and benefits of climate-mitigation options are usually static in nature and address individual power plants. Our paper presents, to our knowledge, the first life-cycle assessment of the large-scale implementation of climate-mitigation technologies, addressing the feedback of the electricity system onto itself and using scenario-consistent assumptions of technical improvements in key energy and material production technologies.
doi_str_mv 10.1073/pnas.1312753111
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1685414799</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26462807</jstor_id><sourcerecordid>26462807</sourcerecordid><originalsourceid>FETCH-LOGICAL-c650t-a5b26e4c587368dc88a3da350fb76e718e8941cec884dd92c157c9fcd4a64b633</originalsourceid><addsrcrecordid>eNqNkjtvFDEUhUcIREKgpgJG0NBMcv32NJFQxCNSJApIbXk8dzZeee3Fng3akn-Ol10SoKKyrPvdY5-j0zTPCZwSUOxsHW05JYxQJRgh5EFzTKAnneQ9PGyOAajqNKf8qHlSyhIAeqHhcXNEBdVacXLc_LiMMy6ynXFsg5-wc1sXsLWlYCkrjHObphYDujl75-dtVzbrddi2xWG02afSuhQnn1elXYQ02NBivPU5xd1uvQ0YcfK_VEL63jmbhxTbGd1NTCEtPJanzaPJhoLPDudJc_3h_deLT93V54-XF--uOicFzJ0VA5XIndCKST06rS0bLRMwDUqiIhp1z4nDOuDj2FNHhHL95EZuJR8kYyfN-V53vRlWONb_z9kGs85-ZfPWJOvN35Pob8wi3RrOOWN8J_B6L5DK7E2paVQX1X2s4RhCKYieVujt4ZWcvm2wzGbla1Yh2IhpUwzRwAgwLf8DVSBA0B5ERd_8gy7TJscalyFSC0646vtKne0pl1MpGac7cwTMri5mVxdzX5e68fLPTO743_2owKsDsNu8kyPUUDCSKlWJF3tiWeaU7xUkl1SDuleYbDJ2kX0x118oEAlAakuBs5_E0ttu</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685414799</pqid></control><display><type>article</type><title>Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Hertwich, Edgar G. ; Gibon, Thomas ; Bouman, Evert A. ; Arvesen, Anders ; Suh, Sangwon ; Heath, Garvin A. ; Bergesen, Joseph D. ; Ramirez, Andrea ; Vega, Mabel I. ; Shi, Lei</creator><creatorcontrib>Hertwich, Edgar G. ; Gibon, Thomas ; Bouman, Evert A. ; Arvesen, Anders ; Suh, Sangwon ; Heath, Garvin A. ; Bergesen, Joseph D. ; Ramirez, Andrea ; Vega, Mabel I. ; Shi, Lei ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11–40 times more copper for photovoltaic systems and 6–14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050. Significance Life-cycle assessments commonly used to analyze the environmental costs and benefits of climate-mitigation options are usually static in nature and address individual power plants. Our paper presents, to our knowledge, the first life-cycle assessment of the large-scale implementation of climate-mitigation technologies, addressing the feedback of the electricity system onto itself and using scenario-consistent assumptions of technical improvements in key energy and material production technologies.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1312753111</identifier><identifier>PMID: 25288741</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>air pollution ; Carbon Dioxide - chemistry ; Clean technology ; Climate change ; co-benefits of climate change mitigation ; CO2 capture and storage ; concentrating solar power ; Copper - chemistry ; Electric power plants ; Electric Power Supplies - economics ; electricity ; Electricity generation ; Emissions control ; emissions scenarios ; energy ; ENERGY PLANNING, POLICY, AND ECONOMY ; Energy systems ; Environmental Pollutants - economics ; Global Warming - prevention &amp; control ; Humans ; integrated hybrid assessment model ; Iron - chemistry ; land use ; life cycle assessment ; Models, Economic ; photovoltaics ; Physical Sciences ; power plants ; Power supply ; Renewable Energy ; Social Sciences ; SPECIAL FEATURE ; Tradeoff analysis ; wind power</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-05, Vol.112 (20), p.6277-6282</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences May 19, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c650t-a5b26e4c587368dc88a3da350fb76e718e8941cec884dd92c157c9fcd4a64b633</citedby><cites>FETCH-LOGICAL-c650t-a5b26e4c587368dc88a3da350fb76e718e8941cec884dd92c157c9fcd4a64b633</cites><orcidid>0000-0001-8290-6276</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/20.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26462807$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26462807$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53769,53771,57995,58228</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25288741$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1220592$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Hertwich, Edgar G.</creatorcontrib><creatorcontrib>Gibon, Thomas</creatorcontrib><creatorcontrib>Bouman, Evert A.</creatorcontrib><creatorcontrib>Arvesen, Anders</creatorcontrib><creatorcontrib>Suh, Sangwon</creatorcontrib><creatorcontrib>Heath, Garvin A.</creatorcontrib><creatorcontrib>Bergesen, Joseph D.</creatorcontrib><creatorcontrib>Ramirez, Andrea</creatorcontrib><creatorcontrib>Vega, Mabel I.</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11–40 times more copper for photovoltaic systems and 6–14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050. Significance Life-cycle assessments commonly used to analyze the environmental costs and benefits of climate-mitigation options are usually static in nature and address individual power plants. Our paper presents, to our knowledge, the first life-cycle assessment of the large-scale implementation of climate-mitigation technologies, addressing the feedback of the electricity system onto itself and using scenario-consistent assumptions of technical improvements in key energy and material production technologies.</description><subject>air pollution</subject><subject>Carbon Dioxide - chemistry</subject><subject>Clean technology</subject><subject>Climate change</subject><subject>co-benefits of climate change mitigation</subject><subject>CO2 capture and storage</subject><subject>concentrating solar power</subject><subject>Copper - chemistry</subject><subject>Electric power plants</subject><subject>Electric Power Supplies - economics</subject><subject>electricity</subject><subject>Electricity generation</subject><subject>Emissions control</subject><subject>emissions scenarios</subject><subject>energy</subject><subject>ENERGY PLANNING, POLICY, AND ECONOMY</subject><subject>Energy systems</subject><subject>Environmental Pollutants - economics</subject><subject>Global Warming - prevention &amp; control</subject><subject>Humans</subject><subject>integrated hybrid assessment model</subject><subject>Iron - chemistry</subject><subject>land use</subject><subject>life cycle assessment</subject><subject>Models, Economic</subject><subject>photovoltaics</subject><subject>Physical Sciences</subject><subject>power plants</subject><subject>Power supply</subject><subject>Renewable Energy</subject><subject>Social Sciences</subject><subject>SPECIAL FEATURE</subject><subject>Tradeoff analysis</subject><subject>wind power</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkjtvFDEUhUcIREKgpgJG0NBMcv32NJFQxCNSJApIbXk8dzZeee3Fng3akn-Ol10SoKKyrPvdY5-j0zTPCZwSUOxsHW05JYxQJRgh5EFzTKAnneQ9PGyOAajqNKf8qHlSyhIAeqHhcXNEBdVacXLc_LiMMy6ynXFsg5-wc1sXsLWlYCkrjHObphYDujl75-dtVzbrddi2xWG02afSuhQnn1elXYQ02NBivPU5xd1uvQ0YcfK_VEL63jmbhxTbGd1NTCEtPJanzaPJhoLPDudJc_3h_deLT93V54-XF--uOicFzJ0VA5XIndCKST06rS0bLRMwDUqiIhp1z4nDOuDj2FNHhHL95EZuJR8kYyfN-V53vRlWONb_z9kGs85-ZfPWJOvN35Pob8wi3RrOOWN8J_B6L5DK7E2paVQX1X2s4RhCKYieVujt4ZWcvm2wzGbla1Yh2IhpUwzRwAgwLf8DVSBA0B5ERd_8gy7TJscalyFSC0646vtKne0pl1MpGac7cwTMri5mVxdzX5e68fLPTO743_2owKsDsNu8kyPUUDCSKlWJF3tiWeaU7xUkl1SDuleYbDJ2kX0x118oEAlAakuBs5_E0ttu</recordid><startdate>20150519</startdate><enddate>20150519</enddate><creator>Hertwich, Edgar G.</creator><creator>Gibon, Thomas</creator><creator>Bouman, Evert A.</creator><creator>Arvesen, Anders</creator><creator>Suh, Sangwon</creator><creator>Heath, Garvin A.</creator><creator>Bergesen, Joseph D.</creator><creator>Ramirez, Andrea</creator><creator>Vega, Mabel I.</creator><creator>Shi, Lei</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7ST</scope><scope>7TV</scope><scope>7U6</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8290-6276</orcidid></search><sort><creationdate>20150519</creationdate><title>Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies</title><author>Hertwich, Edgar G. ; Gibon, Thomas ; Bouman, Evert A. ; Arvesen, Anders ; Suh, Sangwon ; Heath, Garvin A. ; Bergesen, Joseph D. ; Ramirez, Andrea ; Vega, Mabel I. ; Shi, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c650t-a5b26e4c587368dc88a3da350fb76e718e8941cec884dd92c157c9fcd4a64b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>air pollution</topic><topic>Carbon Dioxide - chemistry</topic><topic>Clean technology</topic><topic>Climate change</topic><topic>co-benefits of climate change mitigation</topic><topic>CO2 capture and storage</topic><topic>concentrating solar power</topic><topic>Copper - chemistry</topic><topic>Electric power plants</topic><topic>Electric Power Supplies - economics</topic><topic>electricity</topic><topic>Electricity generation</topic><topic>Emissions control</topic><topic>emissions scenarios</topic><topic>energy</topic><topic>ENERGY PLANNING, POLICY, AND ECONOMY</topic><topic>Energy systems</topic><topic>Environmental Pollutants - economics</topic><topic>Global Warming - prevention &amp; control</topic><topic>Humans</topic><topic>integrated hybrid assessment model</topic><topic>Iron - chemistry</topic><topic>land use</topic><topic>life cycle assessment</topic><topic>Models, Economic</topic><topic>photovoltaics</topic><topic>Physical Sciences</topic><topic>power plants</topic><topic>Power supply</topic><topic>Renewable Energy</topic><topic>Social Sciences</topic><topic>SPECIAL FEATURE</topic><topic>Tradeoff analysis</topic><topic>wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hertwich, Edgar G.</creatorcontrib><creatorcontrib>Gibon, Thomas</creatorcontrib><creatorcontrib>Bouman, Evert A.</creatorcontrib><creatorcontrib>Arvesen, Anders</creatorcontrib><creatorcontrib>Suh, Sangwon</creatorcontrib><creatorcontrib>Heath, Garvin A.</creatorcontrib><creatorcontrib>Bergesen, Joseph D.</creatorcontrib><creatorcontrib>Ramirez, Andrea</creatorcontrib><creatorcontrib>Vega, Mabel I.</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hertwich, Edgar G.</au><au>Gibon, Thomas</au><au>Bouman, Evert A.</au><au>Arvesen, Anders</au><au>Suh, Sangwon</au><au>Heath, Garvin A.</au><au>Bergesen, Joseph D.</au><au>Ramirez, Andrea</au><au>Vega, Mabel I.</au><au>Shi, Lei</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-05-19</date><risdate>2015</risdate><volume>112</volume><issue>20</issue><spage>6277</spage><epage>6282</epage><pages>6277-6282</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11–40 times more copper for photovoltaic systems and 6–14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050. Significance Life-cycle assessments commonly used to analyze the environmental costs and benefits of climate-mitigation options are usually static in nature and address individual power plants. Our paper presents, to our knowledge, the first life-cycle assessment of the large-scale implementation of climate-mitigation technologies, addressing the feedback of the electricity system onto itself and using scenario-consistent assumptions of technical improvements in key energy and material production technologies.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25288741</pmid><doi>10.1073/pnas.1312753111</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8290-6276</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-05, Vol.112 (20), p.6277-6282
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1685414799
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects air pollution
Carbon Dioxide - chemistry
Clean technology
Climate change
co-benefits of climate change mitigation
CO2 capture and storage
concentrating solar power
Copper - chemistry
Electric power plants
Electric Power Supplies - economics
electricity
Electricity generation
Emissions control
emissions scenarios
energy
ENERGY PLANNING, POLICY, AND ECONOMY
Energy systems
Environmental Pollutants - economics
Global Warming - prevention & control
Humans
integrated hybrid assessment model
Iron - chemistry
land use
life cycle assessment
Models, Economic
photovoltaics
Physical Sciences
power plants
Power supply
Renewable Energy
Social Sciences
SPECIAL FEATURE
Tradeoff analysis
wind power
title Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T09%3A32%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20life-cycle%20assessment%20of%20electricity-supply%20scenarios%20confirms%20global%20environmental%20benefit%20of%20low-carbon%20technologies&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Hertwich,%20Edgar%20G.&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2015-05-19&rft.volume=112&rft.issue=20&rft.spage=6277&rft.epage=6282&rft.pages=6277-6282&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1312753111&rft_dat=%3Cjstor_proqu%3E26462807%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685414799&rft_id=info:pmid/25288741&rft_jstor_id=26462807&rfr_iscdi=true