Nonlinear Behavioral Modeling Dependent on Load Reflection Coefficient Magnitude
A new frequency-domain nonlinear behavioral modeling technique is presented and validated in this paper. This technique extends existing Padé and poly-harmonic distortion models by including the load reflection magnitude, |Γ L |, as a parameter. Although a rigorous approach requires a full 2-D load...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on microwave theory and techniques 2015-05, Vol.63 (5), p.1518-1529 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1529 |
---|---|
container_issue | 5 |
container_start_page | 1518 |
container_title | IEEE transactions on microwave theory and techniques |
container_volume | 63 |
creator | Jialin Cai King, Justin B. Anding Zhu Pedro, Jose C. Brazil, Thomas J. |
description | A new frequency-domain nonlinear behavioral modeling technique is presented and validated in this paper. This technique extends existing Padé and poly-harmonic distortion models by including the load reflection magnitude, |Γ L |, as a parameter. Although a rigorous approach requires a full 2-D load-pull model to cover the entire Smith chart, simulation and experimental evidence have shown that such a 1-D model-that retains only amplitude information of the load reflection coefficient-can give accuracy close to that of a full 2-D load-pull model. Consequently, neglecting the phase constitutes an approximation that provides large benefits without appearing to lead to a severe compromise in accuracy. Furthermore, compared with traditional load-independent models, the new |Γ L |-dependent models provide a major improvement in model accuracy. After a discussion of the model extraction methodology, examples are provided comparing traditional load-pull X-parameter models with the model presented in this paper. The new model not only provides consistently good accuracy, but also has a much smaller model file size. Along with the examples that display the ability of the new modeling technique to predict fundamental frequency behavioral, a second harmonic example is also provided. The modeling approach is also validated using measurements results. |
doi_str_mv | 10.1109/TMTT.2015.2416232 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1685292422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7079512</ieee_id><sourcerecordid>1692330788</sourcerecordid><originalsourceid>FETCH-LOGICAL-c509t-1829790ae1ceb2d53112f9f20c9d87082158d0686b9a4f4d51e0448dc99d5def3</originalsourceid><addsrcrecordid>eNpdkE1PwzAMhiMEEmPwAxCXSly4dNhp0yZHGJ_SBgiVc5U1zsjUNSNtkfj3dNrEgZP12o8t62HsHGGCCOq6mBfFhAOKCU8x4wk_YCMUIo9VlsMhGwGgjFUq4ZidtO1qiKkAOWJvL76pXUM6RLf0qb-dD7qO5t7Q0F1Gd7ShxlDTRb6JZl6b6J1sTVXnhjz1ZK2r3HY818vGdb2hU3Zkdd3S2b6O2cfDfTF9imevj8_Tm1lcCVBdjJKrXIEmrGjBjUgQuVWWQ6WMzEFyFNJAJrOF0qlNjUCCNJWmUsoIQzYZs6vd3U3wXz21Xbl2bUV1rRvyfVtipniSQC7lgF7-Q1e-D83w3UBJwRVPOR8o3FFV8G0byJab4NY6_JQI5dZxuXVcbh2Xe8fDzsVuxxHRH59DrgTy5BdB3Hbx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1685292422</pqid></control><display><type>article</type><title>Nonlinear Behavioral Modeling Dependent on Load Reflection Coefficient Magnitude</title><source>IEEE Electronic Library (IEL)</source><creator>Jialin Cai ; King, Justin B. ; Anding Zhu ; Pedro, Jose C. ; Brazil, Thomas J.</creator><creatorcontrib>Jialin Cai ; King, Justin B. ; Anding Zhu ; Pedro, Jose C. ; Brazil, Thomas J.</creatorcontrib><description>A new frequency-domain nonlinear behavioral modeling technique is presented and validated in this paper. This technique extends existing Padé and poly-harmonic distortion models by including the load reflection magnitude, |Γ L |, as a parameter. Although a rigorous approach requires a full 2-D load-pull model to cover the entire Smith chart, simulation and experimental evidence have shown that such a 1-D model-that retains only amplitude information of the load reflection coefficient-can give accuracy close to that of a full 2-D load-pull model. Consequently, neglecting the phase constitutes an approximation that provides large benefits without appearing to lead to a severe compromise in accuracy. Furthermore, compared with traditional load-independent models, the new |Γ L |-dependent models provide a major improvement in model accuracy. After a discussion of the model extraction methodology, examples are provided comparing traditional load-pull X-parameter models with the model presented in this paper. The new model not only provides consistently good accuracy, but also has a much smaller model file size. Along with the examples that display the ability of the new modeling technique to predict fundamental frequency behavioral, a second harmonic example is also provided. The modeling approach is also validated using measurements results.</description><identifier>ISSN: 0018-9480</identifier><identifier>EISSN: 1557-9670</identifier><identifier>DOI: 10.1109/TMTT.2015.2416232</identifier><identifier>CODEN: IETMAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Accuracy ; Approximation ; Approximation methods ; Behavioral model ; Distortion ; Harmonic analysis ; Integrated circuit modeling ; Load modeling ; load-pull model ; Mathematical analysis ; Mathematical models ; Microwaves ; nonlinear ; Nonlinearity ; Padé model ; poly-harmonic distortion (PHD) model ; Predictive models ; Reflection ; Reflection coefficient ; Transistors</subject><ispartof>IEEE transactions on microwave theory and techniques, 2015-05, Vol.63 (5), p.1518-1529</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c509t-1829790ae1ceb2d53112f9f20c9d87082158d0686b9a4f4d51e0448dc99d5def3</citedby><cites>FETCH-LOGICAL-c509t-1829790ae1ceb2d53112f9f20c9d87082158d0686b9a4f4d51e0448dc99d5def3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7079512$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7079512$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jialin Cai</creatorcontrib><creatorcontrib>King, Justin B.</creatorcontrib><creatorcontrib>Anding Zhu</creatorcontrib><creatorcontrib>Pedro, Jose C.</creatorcontrib><creatorcontrib>Brazil, Thomas J.</creatorcontrib><title>Nonlinear Behavioral Modeling Dependent on Load Reflection Coefficient Magnitude</title><title>IEEE transactions on microwave theory and techniques</title><addtitle>TMTT</addtitle><description>A new frequency-domain nonlinear behavioral modeling technique is presented and validated in this paper. This technique extends existing Padé and poly-harmonic distortion models by including the load reflection magnitude, |Γ L |, as a parameter. Although a rigorous approach requires a full 2-D load-pull model to cover the entire Smith chart, simulation and experimental evidence have shown that such a 1-D model-that retains only amplitude information of the load reflection coefficient-can give accuracy close to that of a full 2-D load-pull model. Consequently, neglecting the phase constitutes an approximation that provides large benefits without appearing to lead to a severe compromise in accuracy. Furthermore, compared with traditional load-independent models, the new |Γ L |-dependent models provide a major improvement in model accuracy. After a discussion of the model extraction methodology, examples are provided comparing traditional load-pull X-parameter models with the model presented in this paper. The new model not only provides consistently good accuracy, but also has a much smaller model file size. Along with the examples that display the ability of the new modeling technique to predict fundamental frequency behavioral, a second harmonic example is also provided. The modeling approach is also validated using measurements results.</description><subject>Accuracy</subject><subject>Approximation</subject><subject>Approximation methods</subject><subject>Behavioral model</subject><subject>Distortion</subject><subject>Harmonic analysis</subject><subject>Integrated circuit modeling</subject><subject>Load modeling</subject><subject>load-pull model</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Microwaves</subject><subject>nonlinear</subject><subject>Nonlinearity</subject><subject>Padé model</subject><subject>poly-harmonic distortion (PHD) model</subject><subject>Predictive models</subject><subject>Reflection</subject><subject>Reflection coefficient</subject><subject>Transistors</subject><issn>0018-9480</issn><issn>1557-9670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkE1PwzAMhiMEEmPwAxCXSly4dNhp0yZHGJ_SBgiVc5U1zsjUNSNtkfj3dNrEgZP12o8t62HsHGGCCOq6mBfFhAOKCU8x4wk_YCMUIo9VlsMhGwGgjFUq4ZidtO1qiKkAOWJvL76pXUM6RLf0qb-dD7qO5t7Q0F1Gd7ShxlDTRb6JZl6b6J1sTVXnhjz1ZK2r3HY818vGdb2hU3Zkdd3S2b6O2cfDfTF9imevj8_Tm1lcCVBdjJKrXIEmrGjBjUgQuVWWQ6WMzEFyFNJAJrOF0qlNjUCCNJWmUsoIQzYZs6vd3U3wXz21Xbl2bUV1rRvyfVtipniSQC7lgF7-Q1e-D83w3UBJwRVPOR8o3FFV8G0byJab4NY6_JQI5dZxuXVcbh2Xe8fDzsVuxxHRH59DrgTy5BdB3Hbx</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Jialin Cai</creator><creator>King, Justin B.</creator><creator>Anding Zhu</creator><creator>Pedro, Jose C.</creator><creator>Brazil, Thomas J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20150501</creationdate><title>Nonlinear Behavioral Modeling Dependent on Load Reflection Coefficient Magnitude</title><author>Jialin Cai ; King, Justin B. ; Anding Zhu ; Pedro, Jose C. ; Brazil, Thomas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c509t-1829790ae1ceb2d53112f9f20c9d87082158d0686b9a4f4d51e0448dc99d5def3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Approximation</topic><topic>Approximation methods</topic><topic>Behavioral model</topic><topic>Distortion</topic><topic>Harmonic analysis</topic><topic>Integrated circuit modeling</topic><topic>Load modeling</topic><topic>load-pull model</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Microwaves</topic><topic>nonlinear</topic><topic>Nonlinearity</topic><topic>Padé model</topic><topic>poly-harmonic distortion (PHD) model</topic><topic>Predictive models</topic><topic>Reflection</topic><topic>Reflection coefficient</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jialin Cai</creatorcontrib><creatorcontrib>King, Justin B.</creatorcontrib><creatorcontrib>Anding Zhu</creatorcontrib><creatorcontrib>Pedro, Jose C.</creatorcontrib><creatorcontrib>Brazil, Thomas J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on microwave theory and techniques</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jialin Cai</au><au>King, Justin B.</au><au>Anding Zhu</au><au>Pedro, Jose C.</au><au>Brazil, Thomas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear Behavioral Modeling Dependent on Load Reflection Coefficient Magnitude</atitle><jtitle>IEEE transactions on microwave theory and techniques</jtitle><stitle>TMTT</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>63</volume><issue>5</issue><spage>1518</spage><epage>1529</epage><pages>1518-1529</pages><issn>0018-9480</issn><eissn>1557-9670</eissn><coden>IETMAB</coden><abstract>A new frequency-domain nonlinear behavioral modeling technique is presented and validated in this paper. This technique extends existing Padé and poly-harmonic distortion models by including the load reflection magnitude, |Γ L |, as a parameter. Although a rigorous approach requires a full 2-D load-pull model to cover the entire Smith chart, simulation and experimental evidence have shown that such a 1-D model-that retains only amplitude information of the load reflection coefficient-can give accuracy close to that of a full 2-D load-pull model. Consequently, neglecting the phase constitutes an approximation that provides large benefits without appearing to lead to a severe compromise in accuracy. Furthermore, compared with traditional load-independent models, the new |Γ L |-dependent models provide a major improvement in model accuracy. After a discussion of the model extraction methodology, examples are provided comparing traditional load-pull X-parameter models with the model presented in this paper. The new model not only provides consistently good accuracy, but also has a much smaller model file size. Along with the examples that display the ability of the new modeling technique to predict fundamental frequency behavioral, a second harmonic example is also provided. The modeling approach is also validated using measurements results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMTT.2015.2416232</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9480 |
ispartof | IEEE transactions on microwave theory and techniques, 2015-05, Vol.63 (5), p.1518-1529 |
issn | 0018-9480 1557-9670 |
language | eng |
recordid | cdi_proquest_journals_1685292422 |
source | IEEE Electronic Library (IEL) |
subjects | Accuracy Approximation Approximation methods Behavioral model Distortion Harmonic analysis Integrated circuit modeling Load modeling load-pull model Mathematical analysis Mathematical models Microwaves nonlinear Nonlinearity Padé model poly-harmonic distortion (PHD) model Predictive models Reflection Reflection coefficient Transistors |
title | Nonlinear Behavioral Modeling Dependent on Load Reflection Coefficient Magnitude |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A20%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20Behavioral%20Modeling%20Dependent%20on%20Load%20Reflection%20Coefficient%20Magnitude&rft.jtitle=IEEE%20transactions%20on%20microwave%20theory%20and%20techniques&rft.au=Jialin%20Cai&rft.date=2015-05-01&rft.volume=63&rft.issue=5&rft.spage=1518&rft.epage=1529&rft.pages=1518-1529&rft.issn=0018-9480&rft.eissn=1557-9670&rft.coden=IETMAB&rft_id=info:doi/10.1109/TMTT.2015.2416232&rft_dat=%3Cproquest_RIE%3E1692330788%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1685292422&rft_id=info:pmid/&rft_ieee_id=7079512&rfr_iscdi=true |