Observation of biexcitons in monolayer WSe2

Strong many-body Coulomb interactions allow for bound two- and three-body excitonic states to form in monolayer transition metal dichalcogenides, but it is now shown that such interactions are strong enough to create four-body biexcitonic states. Transition metal dichalcogenide (TMDC) crystals exhib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2015-06, Vol.11 (6), p.477-481
Hauptverfasser: You, Yumeng, Zhang, Xiao-Xiao, Berkelbach, Timothy C., Hybertsen, Mark S., Reichman, David R., Heinz, Tony F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 481
container_issue 6
container_start_page 477
container_title Nature physics
container_volume 11
creator You, Yumeng
Zhang, Xiao-Xiao
Berkelbach, Timothy C.
Hybertsen, Mark S.
Reichman, David R.
Heinz, Tony F.
description Strong many-body Coulomb interactions allow for bound two- and three-body excitonic states to form in monolayer transition metal dichalcogenides, but it is now shown that such interactions are strong enough to create four-body biexcitonic states. Transition metal dichalcogenide (TMDC) crystals exhibit new emergent properties at monolayer thickness 1 , 2 , notably strong many-body effects mediated by Coulomb interactions 3 , 4 , 5 , 6 . A manifestation of these many-body interactions is the formation of excitons, bound electron–hole pairs, but higher-order excitonic states are also possible. Here we demonstrate the existence of four-body, biexciton states in monolayer WSe 2 . The biexciton is identified as a sharply defined state in photoluminescence at high exciton density. Its binding energy of 52 meV is more than an order of magnitude greater than that found in conventional quantum-well structures 7 . A variational calculation of the biexciton state reveals that the high binding energy arises not only from strong carrier confinement, but also from reduced and non-local dielectric screening. These results open the way for the creation of new correlated excitonic states linking the degenerate valleys in TMDC crystals, as well as more complex many-body states such as exciton condensates or the recently reported dropletons 8 .
doi_str_mv 10.1038/nphys3324
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1684989966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3701871041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-71e3fddb9398a6e22cff49a993400eb7333e8cba76373bd8200cb83c615a3f753</originalsourceid><addsrcrecordid>eNpl0EtLAzEUBeAgCtbqwn8w4EplNMlN81hK8QWFLlRcDkkm0SltMiZTcf69IyNFcHXv4uMcOAidEnxFMMjr0L73GYCyPTQhgs1KyiTZ3_0CDtFRziuMGeUEJuhyabJLn7prYiiiL0zjvmzTxZCLJhSbGOJa9y4Vr0-OHqMDr9fZnfzeKXq5u32eP5SL5f3j_GZRWqDQlYI48HVtFCipuaPUes-UVgoYxs4IAHDSGi04CDC1pBhbI8FyMtPgxQym6GzMbVP82LrcVau4TWGorAiXTEmlOB_U-ahsijkn56s2NRud-org6meLarfFYC9GmwcT3lz6k_gPfwPEGF90</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1684989966</pqid></control><display><type>article</type><title>Observation of biexcitons in monolayer WSe2</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>You, Yumeng ; Zhang, Xiao-Xiao ; Berkelbach, Timothy C. ; Hybertsen, Mark S. ; Reichman, David R. ; Heinz, Tony F.</creator><creatorcontrib>You, Yumeng ; Zhang, Xiao-Xiao ; Berkelbach, Timothy C. ; Hybertsen, Mark S. ; Reichman, David R. ; Heinz, Tony F.</creatorcontrib><description>Strong many-body Coulomb interactions allow for bound two- and three-body excitonic states to form in monolayer transition metal dichalcogenides, but it is now shown that such interactions are strong enough to create four-body biexcitonic states. Transition metal dichalcogenide (TMDC) crystals exhibit new emergent properties at monolayer thickness 1 , 2 , notably strong many-body effects mediated by Coulomb interactions 3 , 4 , 5 , 6 . A manifestation of these many-body interactions is the formation of excitons, bound electron–hole pairs, but higher-order excitonic states are also possible. Here we demonstrate the existence of four-body, biexciton states in monolayer WSe 2 . The biexciton is identified as a sharply defined state in photoluminescence at high exciton density. Its binding energy of 52 meV is more than an order of magnitude greater than that found in conventional quantum-well structures 7 . A variational calculation of the biexciton state reveals that the high binding energy arises not only from strong carrier confinement, but also from reduced and non-local dielectric screening. These results open the way for the creation of new correlated excitonic states linking the degenerate valleys in TMDC crystals, as well as more complex many-body states such as exciton condensates or the recently reported dropletons 8 .</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys3324</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/125 ; 639/301/357/1018 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Crystals ; letter ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Theoretical</subject><ispartof>Nature physics, 2015-06, Vol.11 (6), p.477-481</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jun 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-71e3fddb9398a6e22cff49a993400eb7333e8cba76373bd8200cb83c615a3f753</citedby><cites>FETCH-LOGICAL-c323t-71e3fddb9398a6e22cff49a993400eb7333e8cba76373bd8200cb83c615a3f753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys3324$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys3324$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>You, Yumeng</creatorcontrib><creatorcontrib>Zhang, Xiao-Xiao</creatorcontrib><creatorcontrib>Berkelbach, Timothy C.</creatorcontrib><creatorcontrib>Hybertsen, Mark S.</creatorcontrib><creatorcontrib>Reichman, David R.</creatorcontrib><creatorcontrib>Heinz, Tony F.</creatorcontrib><title>Observation of biexcitons in monolayer WSe2</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Strong many-body Coulomb interactions allow for bound two- and three-body excitonic states to form in monolayer transition metal dichalcogenides, but it is now shown that such interactions are strong enough to create four-body biexcitonic states. Transition metal dichalcogenide (TMDC) crystals exhibit new emergent properties at monolayer thickness 1 , 2 , notably strong many-body effects mediated by Coulomb interactions 3 , 4 , 5 , 6 . A manifestation of these many-body interactions is the formation of excitons, bound electron–hole pairs, but higher-order excitonic states are also possible. Here we demonstrate the existence of four-body, biexciton states in monolayer WSe 2 . The biexciton is identified as a sharply defined state in photoluminescence at high exciton density. Its binding energy of 52 meV is more than an order of magnitude greater than that found in conventional quantum-well structures 7 . A variational calculation of the biexciton state reveals that the high binding energy arises not only from strong carrier confinement, but also from reduced and non-local dielectric screening. These results open the way for the creation of new correlated excitonic states linking the degenerate valleys in TMDC crystals, as well as more complex many-body states such as exciton condensates or the recently reported dropletons 8 .</description><subject>119/118</subject><subject>140/125</subject><subject>639/301/357/1018</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Crystals</subject><subject>letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0EtLAzEUBeAgCtbqwn8w4EplNMlN81hK8QWFLlRcDkkm0SltMiZTcf69IyNFcHXv4uMcOAidEnxFMMjr0L73GYCyPTQhgs1KyiTZ3_0CDtFRziuMGeUEJuhyabJLn7prYiiiL0zjvmzTxZCLJhSbGOJa9y4Vr0-OHqMDr9fZnfzeKXq5u32eP5SL5f3j_GZRWqDQlYI48HVtFCipuaPUes-UVgoYxs4IAHDSGi04CDC1pBhbI8FyMtPgxQym6GzMbVP82LrcVau4TWGorAiXTEmlOB_U-ahsijkn56s2NRud-org6meLarfFYC9GmwcT3lz6k_gPfwPEGF90</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>You, Yumeng</creator><creator>Zhang, Xiao-Xiao</creator><creator>Berkelbach, Timothy C.</creator><creator>Hybertsen, Mark S.</creator><creator>Reichman, David R.</creator><creator>Heinz, Tony F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20150601</creationdate><title>Observation of biexcitons in monolayer WSe2</title><author>You, Yumeng ; Zhang, Xiao-Xiao ; Berkelbach, Timothy C. ; Hybertsen, Mark S. ; Reichman, David R. ; Heinz, Tony F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-71e3fddb9398a6e22cff49a993400eb7333e8cba76373bd8200cb83c615a3f753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>119/118</topic><topic>140/125</topic><topic>639/301/357/1018</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Crystals</topic><topic>letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Yumeng</creatorcontrib><creatorcontrib>Zhang, Xiao-Xiao</creatorcontrib><creatorcontrib>Berkelbach, Timothy C.</creatorcontrib><creatorcontrib>Hybertsen, Mark S.</creatorcontrib><creatorcontrib>Reichman, David R.</creatorcontrib><creatorcontrib>Heinz, Tony F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Yumeng</au><au>Zhang, Xiao-Xiao</au><au>Berkelbach, Timothy C.</au><au>Hybertsen, Mark S.</au><au>Reichman, David R.</au><au>Heinz, Tony F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of biexcitons in monolayer WSe2</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>11</volume><issue>6</issue><spage>477</spage><epage>481</epage><pages>477-481</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Strong many-body Coulomb interactions allow for bound two- and three-body excitonic states to form in monolayer transition metal dichalcogenides, but it is now shown that such interactions are strong enough to create four-body biexcitonic states. Transition metal dichalcogenide (TMDC) crystals exhibit new emergent properties at monolayer thickness 1 , 2 , notably strong many-body effects mediated by Coulomb interactions 3 , 4 , 5 , 6 . A manifestation of these many-body interactions is the formation of excitons, bound electron–hole pairs, but higher-order excitonic states are also possible. Here we demonstrate the existence of four-body, biexciton states in monolayer WSe 2 . The biexciton is identified as a sharply defined state in photoluminescence at high exciton density. Its binding energy of 52 meV is more than an order of magnitude greater than that found in conventional quantum-well structures 7 . A variational calculation of the biexciton state reveals that the high binding energy arises not only from strong carrier confinement, but also from reduced and non-local dielectric screening. These results open the way for the creation of new correlated excitonic states linking the degenerate valleys in TMDC crystals, as well as more complex many-body states such as exciton condensates or the recently reported dropletons 8 .</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3324</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2015-06, Vol.11 (6), p.477-481
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_1684989966
source Springer Nature - Complete Springer Journals; Nature Journals Online
subjects 119/118
140/125
639/301/357/1018
Atomic
Classical and Continuum Physics
Complex Systems
Condensed Matter Physics
Crystals
letter
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Physics
Theoretical
title Observation of biexcitons in monolayer WSe2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20biexcitons%20in%20monolayer%20WSe2&rft.jtitle=Nature%20physics&rft.au=You,%20Yumeng&rft.date=2015-06-01&rft.volume=11&rft.issue=6&rft.spage=477&rft.epage=481&rft.pages=477-481&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3324&rft_dat=%3Cproquest_cross%3E3701871041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1684989966&rft_id=info:pmid/&rfr_iscdi=true