Observation of biexcitons in monolayer WSe2
Strong many-body Coulomb interactions allow for bound two- and three-body excitonic states to form in monolayer transition metal dichalcogenides, but it is now shown that such interactions are strong enough to create four-body biexcitonic states. Transition metal dichalcogenide (TMDC) crystals exhib...
Gespeichert in:
Veröffentlicht in: | Nature physics 2015-06, Vol.11 (6), p.477-481 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 481 |
---|---|
container_issue | 6 |
container_start_page | 477 |
container_title | Nature physics |
container_volume | 11 |
creator | You, Yumeng Zhang, Xiao-Xiao Berkelbach, Timothy C. Hybertsen, Mark S. Reichman, David R. Heinz, Tony F. |
description | Strong many-body Coulomb interactions allow for bound two- and three-body excitonic states to form in monolayer transition metal dichalcogenides, but it is now shown that such interactions are strong enough to create four-body biexcitonic states.
Transition metal dichalcogenide (TMDC) crystals exhibit new emergent properties at monolayer thickness
1
,
2
, notably strong many-body effects mediated by Coulomb interactions
3
,
4
,
5
,
6
. A manifestation of these many-body interactions is the formation of excitons, bound electron–hole pairs, but higher-order excitonic states are also possible. Here we demonstrate the existence of four-body, biexciton states in monolayer WSe
2
. The biexciton is identified as a sharply defined state in photoluminescence at high exciton density. Its binding energy of 52 meV is more than an order of magnitude greater than that found in conventional quantum-well structures
7
. A variational calculation of the biexciton state reveals that the high binding energy arises not only from strong carrier confinement, but also from reduced and non-local dielectric screening. These results open the way for the creation of new correlated excitonic states linking the degenerate valleys in TMDC crystals, as well as more complex many-body states such as exciton condensates or the recently reported dropletons
8
. |
doi_str_mv | 10.1038/nphys3324 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1684989966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3701871041</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-71e3fddb9398a6e22cff49a993400eb7333e8cba76373bd8200cb83c615a3f753</originalsourceid><addsrcrecordid>eNpl0EtLAzEUBeAgCtbqwn8w4EplNMlN81hK8QWFLlRcDkkm0SltMiZTcf69IyNFcHXv4uMcOAidEnxFMMjr0L73GYCyPTQhgs1KyiTZ3_0CDtFRziuMGeUEJuhyabJLn7prYiiiL0zjvmzTxZCLJhSbGOJa9y4Vr0-OHqMDr9fZnfzeKXq5u32eP5SL5f3j_GZRWqDQlYI48HVtFCipuaPUes-UVgoYxs4IAHDSGi04CDC1pBhbI8FyMtPgxQym6GzMbVP82LrcVau4TWGorAiXTEmlOB_U-ahsijkn56s2NRud-org6meLarfFYC9GmwcT3lz6k_gPfwPEGF90</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1684989966</pqid></control><display><type>article</type><title>Observation of biexcitons in monolayer WSe2</title><source>Springer Nature - Complete Springer Journals</source><source>Nature Journals Online</source><creator>You, Yumeng ; Zhang, Xiao-Xiao ; Berkelbach, Timothy C. ; Hybertsen, Mark S. ; Reichman, David R. ; Heinz, Tony F.</creator><creatorcontrib>You, Yumeng ; Zhang, Xiao-Xiao ; Berkelbach, Timothy C. ; Hybertsen, Mark S. ; Reichman, David R. ; Heinz, Tony F.</creatorcontrib><description>Strong many-body Coulomb interactions allow for bound two- and three-body excitonic states to form in monolayer transition metal dichalcogenides, but it is now shown that such interactions are strong enough to create four-body biexcitonic states.
Transition metal dichalcogenide (TMDC) crystals exhibit new emergent properties at monolayer thickness
1
,
2
, notably strong many-body effects mediated by Coulomb interactions
3
,
4
,
5
,
6
. A manifestation of these many-body interactions is the formation of excitons, bound electron–hole pairs, but higher-order excitonic states are also possible. Here we demonstrate the existence of four-body, biexciton states in monolayer WSe
2
. The biexciton is identified as a sharply defined state in photoluminescence at high exciton density. Its binding energy of 52 meV is more than an order of magnitude greater than that found in conventional quantum-well structures
7
. A variational calculation of the biexciton state reveals that the high binding energy arises not only from strong carrier confinement, but also from reduced and non-local dielectric screening. These results open the way for the creation of new correlated excitonic states linking the degenerate valleys in TMDC crystals, as well as more complex many-body states such as exciton condensates or the recently reported dropletons
8
.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys3324</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>119/118 ; 140/125 ; 639/301/357/1018 ; Atomic ; Classical and Continuum Physics ; Complex Systems ; Condensed Matter Physics ; Crystals ; letter ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Physics ; Theoretical</subject><ispartof>Nature physics, 2015-06, Vol.11 (6), p.477-481</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jun 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-71e3fddb9398a6e22cff49a993400eb7333e8cba76373bd8200cb83c615a3f753</citedby><cites>FETCH-LOGICAL-c323t-71e3fddb9398a6e22cff49a993400eb7333e8cba76373bd8200cb83c615a3f753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nphys3324$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nphys3324$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>You, Yumeng</creatorcontrib><creatorcontrib>Zhang, Xiao-Xiao</creatorcontrib><creatorcontrib>Berkelbach, Timothy C.</creatorcontrib><creatorcontrib>Hybertsen, Mark S.</creatorcontrib><creatorcontrib>Reichman, David R.</creatorcontrib><creatorcontrib>Heinz, Tony F.</creatorcontrib><title>Observation of biexcitons in monolayer WSe2</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Strong many-body Coulomb interactions allow for bound two- and three-body excitonic states to form in monolayer transition metal dichalcogenides, but it is now shown that such interactions are strong enough to create four-body biexcitonic states.
Transition metal dichalcogenide (TMDC) crystals exhibit new emergent properties at monolayer thickness
1
,
2
, notably strong many-body effects mediated by Coulomb interactions
3
,
4
,
5
,
6
. A manifestation of these many-body interactions is the formation of excitons, bound electron–hole pairs, but higher-order excitonic states are also possible. Here we demonstrate the existence of four-body, biexciton states in monolayer WSe
2
. The biexciton is identified as a sharply defined state in photoluminescence at high exciton density. Its binding energy of 52 meV is more than an order of magnitude greater than that found in conventional quantum-well structures
7
. A variational calculation of the biexciton state reveals that the high binding energy arises not only from strong carrier confinement, but also from reduced and non-local dielectric screening. These results open the way for the creation of new correlated excitonic states linking the degenerate valleys in TMDC crystals, as well as more complex many-body states such as exciton condensates or the recently reported dropletons
8
.</description><subject>119/118</subject><subject>140/125</subject><subject>639/301/357/1018</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Crystals</subject><subject>letter</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Physics</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpl0EtLAzEUBeAgCtbqwn8w4EplNMlN81hK8QWFLlRcDkkm0SltMiZTcf69IyNFcHXv4uMcOAidEnxFMMjr0L73GYCyPTQhgs1KyiTZ3_0CDtFRziuMGeUEJuhyabJLn7prYiiiL0zjvmzTxZCLJhSbGOJa9y4Vr0-OHqMDr9fZnfzeKXq5u32eP5SL5f3j_GZRWqDQlYI48HVtFCipuaPUes-UVgoYxs4IAHDSGi04CDC1pBhbI8FyMtPgxQym6GzMbVP82LrcVau4TWGorAiXTEmlOB_U-ahsijkn56s2NRud-org6meLarfFYC9GmwcT3lz6k_gPfwPEGF90</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>You, Yumeng</creator><creator>Zhang, Xiao-Xiao</creator><creator>Berkelbach, Timothy C.</creator><creator>Hybertsen, Mark S.</creator><creator>Reichman, David R.</creator><creator>Heinz, Tony F.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20150601</creationdate><title>Observation of biexcitons in monolayer WSe2</title><author>You, Yumeng ; Zhang, Xiao-Xiao ; Berkelbach, Timothy C. ; Hybertsen, Mark S. ; Reichman, David R. ; Heinz, Tony F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-71e3fddb9398a6e22cff49a993400eb7333e8cba76373bd8200cb83c615a3f753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>119/118</topic><topic>140/125</topic><topic>639/301/357/1018</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Crystals</topic><topic>letter</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Physics</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>You, Yumeng</creatorcontrib><creatorcontrib>Zhang, Xiao-Xiao</creatorcontrib><creatorcontrib>Berkelbach, Timothy C.</creatorcontrib><creatorcontrib>Hybertsen, Mark S.</creatorcontrib><creatorcontrib>Reichman, David R.</creatorcontrib><creatorcontrib>Heinz, Tony F.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>You, Yumeng</au><au>Zhang, Xiao-Xiao</au><au>Berkelbach, Timothy C.</au><au>Hybertsen, Mark S.</au><au>Reichman, David R.</au><au>Heinz, Tony F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Observation of biexcitons in monolayer WSe2</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>11</volume><issue>6</issue><spage>477</spage><epage>481</epage><pages>477-481</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Strong many-body Coulomb interactions allow for bound two- and three-body excitonic states to form in monolayer transition metal dichalcogenides, but it is now shown that such interactions are strong enough to create four-body biexcitonic states.
Transition metal dichalcogenide (TMDC) crystals exhibit new emergent properties at monolayer thickness
1
,
2
, notably strong many-body effects mediated by Coulomb interactions
3
,
4
,
5
,
6
. A manifestation of these many-body interactions is the formation of excitons, bound electron–hole pairs, but higher-order excitonic states are also possible. Here we demonstrate the existence of four-body, biexciton states in monolayer WSe
2
. The biexciton is identified as a sharply defined state in photoluminescence at high exciton density. Its binding energy of 52 meV is more than an order of magnitude greater than that found in conventional quantum-well structures
7
. A variational calculation of the biexciton state reveals that the high binding energy arises not only from strong carrier confinement, but also from reduced and non-local dielectric screening. These results open the way for the creation of new correlated excitonic states linking the degenerate valleys in TMDC crystals, as well as more complex many-body states such as exciton condensates or the recently reported dropletons
8
.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys3324</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2015-06, Vol.11 (6), p.477-481 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_1684989966 |
source | Springer Nature - Complete Springer Journals; Nature Journals Online |
subjects | 119/118 140/125 639/301/357/1018 Atomic Classical and Continuum Physics Complex Systems Condensed Matter Physics Crystals letter Mathematical and Computational Physics Molecular Optical and Plasma Physics Physics Theoretical |
title | Observation of biexcitons in monolayer WSe2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A59%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Observation%20of%20biexcitons%20in%20monolayer%20WSe2&rft.jtitle=Nature%20physics&rft.au=You,%20Yumeng&rft.date=2015-06-01&rft.volume=11&rft.issue=6&rft.spage=477&rft.epage=481&rft.pages=477-481&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys3324&rft_dat=%3Cproquest_cross%3E3701871041%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1684989966&rft_id=info:pmid/&rfr_iscdi=true |