Extended supersymmetries and the Dirac operator
We consider supersymmetric quantum mechanical systems in arbitrary dimensions on curved spaces with nontrivial gauge fields. The square of the Dirac operator serves as Hamiltonian. We derive a relation between the number of supercharges that exist and restrictions on the geometry of the underlying s...
Gespeichert in:
Veröffentlicht in: | Annals of physics 2005-02, Vol.315 (2), p.467-487 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 487 |
---|---|
container_issue | 2 |
container_start_page | 467 |
container_title | Annals of physics |
container_volume | 315 |
creator | Kirchberg, A. Länge, J.D. Wipf, A. |
description | We consider supersymmetric quantum mechanical systems in arbitrary dimensions on curved spaces with nontrivial gauge fields. The square of the Dirac operator serves as Hamiltonian. We derive a relation between the number of supercharges that exist and restrictions on the geometry of the underlying spaces as well as the admissible gauge field configurations. From the superalgebra with two or more real supercharges we infer the existence of integrability conditions and obtain a corresponding superpotential. This potential can be used to deform the supercharges and to determine zero modes of the Dirac operator. The general results are applied to the Kähler spaces CPn. |
doi_str_mv | 10.1016/j.aop.2004.08.006 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1683335537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491604001496</els_id><sourcerecordid>3695809251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-9cf9df9e15b3f01ff47d542bc9f9cb70839d71985d1a7613f02281cab53443e63</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz-3ONE3b4EnW9QMWvCh4C2kywRa3rUkr7r83y3r2NId5n3eGh7FrhAwBy1WX6WHMcoAigzoDKE_YAkGWKXDxfsoWAMDTQmJ5zi5C6AAQC1Ev2GrzM1FvySZhHsmH_W5Hk28pJLq3yfRByX3rtUmGuNTT4C_ZmdOfga7-5pK9PWxe10_p9uXxeX23TQ3PxZRK46R1klA03AE6V1RWFHljpJOmqaDm0lYoa2FRVyXGTJ7XaHQjeFFwKvmS3Rx7Rz98zRQm1Q2z7-NJhWXNOReCVzGFx5TxQwienBp9u9N-rxDUwYvqVPSiDl4U1Cp6icztkaH4_ndLXgXTUm_Itp7MpOzQ_kP_ApgsadM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683335537</pqid></control><display><type>article</type><title>Extended supersymmetries and the Dirac operator</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kirchberg, A. ; Länge, J.D. ; Wipf, A.</creator><creatorcontrib>Kirchberg, A. ; Länge, J.D. ; Wipf, A.</creatorcontrib><description>We consider supersymmetric quantum mechanical systems in arbitrary dimensions on curved spaces with nontrivial gauge fields. The square of the Dirac operator serves as Hamiltonian. We derive a relation between the number of supercharges that exist and restrictions on the geometry of the underlying spaces as well as the admissible gauge field configurations. From the superalgebra with two or more real supercharges we infer the existence of integrability conditions and obtain a corresponding superpotential. This potential can be used to deform the supercharges and to determine zero modes of the Dirac operator. The general results are applied to the Kähler spaces CPn.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2004.08.006</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>02.40.Dr ; 02.40.Ky ; 11.30.Pb ; Complex manifolds ; Dirac operator ; Kähler manifolds ; Projective spaces ; Supersymmetry</subject><ispartof>Annals of physics, 2005-02, Vol.315 (2), p.467-487</ispartof><rights>2004 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-9cf9df9e15b3f01ff47d542bc9f9cb70839d71985d1a7613f02281cab53443e63</citedby><cites>FETCH-LOGICAL-c325t-9cf9df9e15b3f01ff47d542bc9f9cb70839d71985d1a7613f02281cab53443e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aop.2004.08.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kirchberg, A.</creatorcontrib><creatorcontrib>Länge, J.D.</creatorcontrib><creatorcontrib>Wipf, A.</creatorcontrib><title>Extended supersymmetries and the Dirac operator</title><title>Annals of physics</title><description>We consider supersymmetric quantum mechanical systems in arbitrary dimensions on curved spaces with nontrivial gauge fields. The square of the Dirac operator serves as Hamiltonian. We derive a relation between the number of supercharges that exist and restrictions on the geometry of the underlying spaces as well as the admissible gauge field configurations. From the superalgebra with two or more real supercharges we infer the existence of integrability conditions and obtain a corresponding superpotential. This potential can be used to deform the supercharges and to determine zero modes of the Dirac operator. The general results are applied to the Kähler spaces CPn.</description><subject>02.40.Dr</subject><subject>02.40.Ky</subject><subject>11.30.Pb</subject><subject>Complex manifolds</subject><subject>Dirac operator</subject><subject>Kähler manifolds</subject><subject>Projective spaces</subject><subject>Supersymmetry</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz-3ONE3b4EnW9QMWvCh4C2kywRa3rUkr7r83y3r2NId5n3eGh7FrhAwBy1WX6WHMcoAigzoDKE_YAkGWKXDxfsoWAMDTQmJ5zi5C6AAQC1Ev2GrzM1FvySZhHsmH_W5Hk28pJLq3yfRByX3rtUmGuNTT4C_ZmdOfga7-5pK9PWxe10_p9uXxeX23TQ3PxZRK46R1klA03AE6V1RWFHljpJOmqaDm0lYoa2FRVyXGTJ7XaHQjeFFwKvmS3Rx7Rz98zRQm1Q2z7-NJhWXNOReCVzGFx5TxQwienBp9u9N-rxDUwYvqVPSiDl4U1Cp6icztkaH4_ndLXgXTUm_Itp7MpOzQ_kP_ApgsadM</recordid><startdate>200502</startdate><enddate>200502</enddate><creator>Kirchberg, A.</creator><creator>Länge, J.D.</creator><creator>Wipf, A.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200502</creationdate><title>Extended supersymmetries and the Dirac operator</title><author>Kirchberg, A. ; Länge, J.D. ; Wipf, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-9cf9df9e15b3f01ff47d542bc9f9cb70839d71985d1a7613f02281cab53443e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>02.40.Dr</topic><topic>02.40.Ky</topic><topic>11.30.Pb</topic><topic>Complex manifolds</topic><topic>Dirac operator</topic><topic>Kähler manifolds</topic><topic>Projective spaces</topic><topic>Supersymmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirchberg, A.</creatorcontrib><creatorcontrib>Länge, J.D.</creatorcontrib><creatorcontrib>Wipf, A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirchberg, A.</au><au>Länge, J.D.</au><au>Wipf, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended supersymmetries and the Dirac operator</atitle><jtitle>Annals of physics</jtitle><date>2005-02</date><risdate>2005</risdate><volume>315</volume><issue>2</issue><spage>467</spage><epage>487</epage><pages>467-487</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>We consider supersymmetric quantum mechanical systems in arbitrary dimensions on curved spaces with nontrivial gauge fields. The square of the Dirac operator serves as Hamiltonian. We derive a relation between the number of supercharges that exist and restrictions on the geometry of the underlying spaces as well as the admissible gauge field configurations. From the superalgebra with two or more real supercharges we infer the existence of integrability conditions and obtain a corresponding superpotential. This potential can be used to deform the supercharges and to determine zero modes of the Dirac operator. The general results are applied to the Kähler spaces CPn.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2004.08.006</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-4916 |
ispartof | Annals of physics, 2005-02, Vol.315 (2), p.467-487 |
issn | 0003-4916 1096-035X |
language | eng |
recordid | cdi_proquest_journals_1683335537 |
source | Elsevier ScienceDirect Journals Complete |
subjects | 02.40.Dr 02.40.Ky 11.30.Pb Complex manifolds Dirac operator Kähler manifolds Projective spaces Supersymmetry |
title | Extended supersymmetries and the Dirac operator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20supersymmetries%20and%20the%20Dirac%20operator&rft.jtitle=Annals%20of%20physics&rft.au=Kirchberg,%20A.&rft.date=2005-02&rft.volume=315&rft.issue=2&rft.spage=467&rft.epage=487&rft.pages=467-487&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2004.08.006&rft_dat=%3Cproquest_cross%3E3695809251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1683335537&rft_id=info:pmid/&rft_els_id=S0003491604001496&rfr_iscdi=true |