Extended supersymmetries and the Dirac operator

We consider supersymmetric quantum mechanical systems in arbitrary dimensions on curved spaces with nontrivial gauge fields. The square of the Dirac operator serves as Hamiltonian. We derive a relation between the number of supercharges that exist and restrictions on the geometry of the underlying s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of physics 2005-02, Vol.315 (2), p.467-487
Hauptverfasser: Kirchberg, A., Länge, J.D., Wipf, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 487
container_issue 2
container_start_page 467
container_title Annals of physics
container_volume 315
creator Kirchberg, A.
Länge, J.D.
Wipf, A.
description We consider supersymmetric quantum mechanical systems in arbitrary dimensions on curved spaces with nontrivial gauge fields. The square of the Dirac operator serves as Hamiltonian. We derive a relation between the number of supercharges that exist and restrictions on the geometry of the underlying spaces as well as the admissible gauge field configurations. From the superalgebra with two or more real supercharges we infer the existence of integrability conditions and obtain a corresponding superpotential. This potential can be used to deform the supercharges and to determine zero modes of the Dirac operator. The general results are applied to the Kähler spaces CPn.
doi_str_mv 10.1016/j.aop.2004.08.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1683335537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003491604001496</els_id><sourcerecordid>3695809251</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-9cf9df9e15b3f01ff47d542bc9f9cb70839d71985d1a7613f02281cab53443e63</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouK7-AG8Fz-3ONE3b4EnW9QMWvCh4C2kywRa3rUkr7r83y3r2NId5n3eGh7FrhAwBy1WX6WHMcoAigzoDKE_YAkGWKXDxfsoWAMDTQmJ5zi5C6AAQC1Ev2GrzM1FvySZhHsmH_W5Hk28pJLq3yfRByX3rtUmGuNTT4C_ZmdOfga7-5pK9PWxe10_p9uXxeX23TQ3PxZRK46R1klA03AE6V1RWFHljpJOmqaDm0lYoa2FRVyXGTJ7XaHQjeFFwKvmS3Rx7Rz98zRQm1Q2z7-NJhWXNOReCVzGFx5TxQwienBp9u9N-rxDUwYvqVPSiDl4U1Cp6icztkaH4_ndLXgXTUm_Itp7MpOzQ_kP_ApgsadM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683335537</pqid></control><display><type>article</type><title>Extended supersymmetries and the Dirac operator</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Kirchberg, A. ; Länge, J.D. ; Wipf, A.</creator><creatorcontrib>Kirchberg, A. ; Länge, J.D. ; Wipf, A.</creatorcontrib><description>We consider supersymmetric quantum mechanical systems in arbitrary dimensions on curved spaces with nontrivial gauge fields. The square of the Dirac operator serves as Hamiltonian. We derive a relation between the number of supercharges that exist and restrictions on the geometry of the underlying spaces as well as the admissible gauge field configurations. From the superalgebra with two or more real supercharges we infer the existence of integrability conditions and obtain a corresponding superpotential. This potential can be used to deform the supercharges and to determine zero modes of the Dirac operator. The general results are applied to the Kähler spaces CPn.</description><identifier>ISSN: 0003-4916</identifier><identifier>EISSN: 1096-035X</identifier><identifier>DOI: 10.1016/j.aop.2004.08.006</identifier><identifier>CODEN: APNYA6</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>02.40.Dr ; 02.40.Ky ; 11.30.Pb ; Complex manifolds ; Dirac operator ; Kähler manifolds ; Projective spaces ; Supersymmetry</subject><ispartof>Annals of physics, 2005-02, Vol.315 (2), p.467-487</ispartof><rights>2004 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-9cf9df9e15b3f01ff47d542bc9f9cb70839d71985d1a7613f02281cab53443e63</citedby><cites>FETCH-LOGICAL-c325t-9cf9df9e15b3f01ff47d542bc9f9cb70839d71985d1a7613f02281cab53443e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.aop.2004.08.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Kirchberg, A.</creatorcontrib><creatorcontrib>Länge, J.D.</creatorcontrib><creatorcontrib>Wipf, A.</creatorcontrib><title>Extended supersymmetries and the Dirac operator</title><title>Annals of physics</title><description>We consider supersymmetric quantum mechanical systems in arbitrary dimensions on curved spaces with nontrivial gauge fields. The square of the Dirac operator serves as Hamiltonian. We derive a relation between the number of supercharges that exist and restrictions on the geometry of the underlying spaces as well as the admissible gauge field configurations. From the superalgebra with two or more real supercharges we infer the existence of integrability conditions and obtain a corresponding superpotential. This potential can be used to deform the supercharges and to determine zero modes of the Dirac operator. The general results are applied to the Kähler spaces CPn.</description><subject>02.40.Dr</subject><subject>02.40.Ky</subject><subject>11.30.Pb</subject><subject>Complex manifolds</subject><subject>Dirac operator</subject><subject>Kähler manifolds</subject><subject>Projective spaces</subject><subject>Supersymmetry</subject><issn>0003-4916</issn><issn>1096-035X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouK7-AG8Fz-3ONE3b4EnW9QMWvCh4C2kywRa3rUkr7r83y3r2NId5n3eGh7FrhAwBy1WX6WHMcoAigzoDKE_YAkGWKXDxfsoWAMDTQmJ5zi5C6AAQC1Ev2GrzM1FvySZhHsmH_W5Hk28pJLq3yfRByX3rtUmGuNTT4C_ZmdOfga7-5pK9PWxe10_p9uXxeX23TQ3PxZRK46R1klA03AE6V1RWFHljpJOmqaDm0lYoa2FRVyXGTJ7XaHQjeFFwKvmS3Rx7Rz98zRQm1Q2z7-NJhWXNOReCVzGFx5TxQwienBp9u9N-rxDUwYvqVPSiDl4U1Cp6icztkaH4_ndLXgXTUm_Itp7MpOzQ_kP_ApgsadM</recordid><startdate>200502</startdate><enddate>200502</enddate><creator>Kirchberg, A.</creator><creator>Länge, J.D.</creator><creator>Wipf, A.</creator><general>Elsevier Inc</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>200502</creationdate><title>Extended supersymmetries and the Dirac operator</title><author>Kirchberg, A. ; Länge, J.D. ; Wipf, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-9cf9df9e15b3f01ff47d542bc9f9cb70839d71985d1a7613f02281cab53443e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>02.40.Dr</topic><topic>02.40.Ky</topic><topic>11.30.Pb</topic><topic>Complex manifolds</topic><topic>Dirac operator</topic><topic>Kähler manifolds</topic><topic>Projective spaces</topic><topic>Supersymmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirchberg, A.</creatorcontrib><creatorcontrib>Länge, J.D.</creatorcontrib><creatorcontrib>Wipf, A.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annals of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirchberg, A.</au><au>Länge, J.D.</au><au>Wipf, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extended supersymmetries and the Dirac operator</atitle><jtitle>Annals of physics</jtitle><date>2005-02</date><risdate>2005</risdate><volume>315</volume><issue>2</issue><spage>467</spage><epage>487</epage><pages>467-487</pages><issn>0003-4916</issn><eissn>1096-035X</eissn><coden>APNYA6</coden><abstract>We consider supersymmetric quantum mechanical systems in arbitrary dimensions on curved spaces with nontrivial gauge fields. The square of the Dirac operator serves as Hamiltonian. We derive a relation between the number of supercharges that exist and restrictions on the geometry of the underlying spaces as well as the admissible gauge field configurations. From the superalgebra with two or more real supercharges we infer the existence of integrability conditions and obtain a corresponding superpotential. This potential can be used to deform the supercharges and to determine zero modes of the Dirac operator. The general results are applied to the Kähler spaces CPn.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.aop.2004.08.006</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-4916
ispartof Annals of physics, 2005-02, Vol.315 (2), p.467-487
issn 0003-4916
1096-035X
language eng
recordid cdi_proquest_journals_1683335537
source Elsevier ScienceDirect Journals Complete
subjects 02.40.Dr
02.40.Ky
11.30.Pb
Complex manifolds
Dirac operator
Kähler manifolds
Projective spaces
Supersymmetry
title Extended supersymmetries and the Dirac operator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A29%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extended%20supersymmetries%20and%20the%20Dirac%20operator&rft.jtitle=Annals%20of%20physics&rft.au=Kirchberg,%20A.&rft.date=2005-02&rft.volume=315&rft.issue=2&rft.spage=467&rft.epage=487&rft.pages=467-487&rft.issn=0003-4916&rft.eissn=1096-035X&rft.coden=APNYA6&rft_id=info:doi/10.1016/j.aop.2004.08.006&rft_dat=%3Cproquest_cross%3E3695809251%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1683335537&rft_id=info:pmid/&rft_els_id=S0003491604001496&rfr_iscdi=true