Supervised learning for building stemmers

This work is part of a project aiming to define a methodology for building simple but robust stemmers, having primitive knowledge of the stemmer’s target language. The methodology starts with a very simple primary stemmer that simply removes the longest suffix (using the primitive knowledge – the li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of information science 2015-06, Vol.41 (3), p.315-328
1. Verfasser: Karanikolas, Nikitas N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 328
container_issue 3
container_start_page 315
container_title Journal of information science
container_volume 41
creator Karanikolas, Nikitas N.
description This work is part of a project aiming to define a methodology for building simple but robust stemmers, having primitive knowledge of the stemmer’s target language. The methodology starts with a very simple primary stemmer that simply removes the longest suffix (using the primitive knowledge – the list of available suffixes) that matches the ending of the examined word. Information retrieval (IR) experts express their arguments against the results of the primary stemmer. These (the experts’ arguments) are valuable knowledge that offer us the ability to apply supervised learning in order to automatically produce better stemmers (that conform to the arguments expressed by the IR experts). We also conduct an evaluation of our supervised learning-based methodology that builds stemmers for languages that the experts do not have knowledge on.
doi_str_mv 10.1177/0165551515572528
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1683109257</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0165551515572528</sage_id><sourcerecordid>3694971601</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-d928b9aa71f08dcec2e6087adfbc50626b00658e76832e6d0d3f752102b0933e3</originalsourceid><addsrcrecordid>eNp1kEtLxTAQhYMoWK_uXRZcuYhOkubRpVx8wQUX6rqkzfTSS18mreC_N6UuRJBZDMN3zhk4hFwyuGFM61tgSkrJ4kjNJTdHJGE6Y1RlRh6TZMF04afkLIQDAMhcZAm5fp1H9J9NQJe2aH3f9Pu0Hnxazk3rliNM2HXowzk5qW0b8OJnb8j7w_3b9onuXh6ft3c7WgklJupybsrcWs1qMK7CiqMCo62ry0qC4qoEUNKgVkZE5MCJWkvOgJeQC4FiQ67W3NEPHzOGqTgMs-_jy4JFD4OcSx1VsKoqP4TgsS5G33TWfxUMiqWQ4m8h0UJXS7B7_BX6n_4b9X1eEw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1683109257</pqid></control><display><type>article</type><title>Supervised learning for building stemmers</title><source>SAGE Complete A-Z List</source><creator>Karanikolas, Nikitas N.</creator><creatorcontrib>Karanikolas, Nikitas N.</creatorcontrib><description>This work is part of a project aiming to define a methodology for building simple but robust stemmers, having primitive knowledge of the stemmer’s target language. The methodology starts with a very simple primary stemmer that simply removes the longest suffix (using the primitive knowledge – the list of available suffixes) that matches the ending of the examined word. Information retrieval (IR) experts express their arguments against the results of the primary stemmer. These (the experts’ arguments) are valuable knowledge that offer us the ability to apply supervised learning in order to automatically produce better stemmers (that conform to the arguments expressed by the IR experts). We also conduct an evaluation of our supervised learning-based methodology that builds stemmers for languages that the experts do not have knowledge on.</description><identifier>ISSN: 0165-5515</identifier><identifier>EISSN: 1741-6485</identifier><identifier>DOI: 10.1177/0165551515572528</identifier><identifier>CODEN: JISCDI</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Information retrieval ; Language ; Studies</subject><ispartof>Journal of information science, 2015-06, Vol.41 (3), p.315-328</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Bowker-Saur Ltd. Jun 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-d928b9aa71f08dcec2e6087adfbc50626b00658e76832e6d0d3f752102b0933e3</citedby><cites>FETCH-LOGICAL-c363t-d928b9aa71f08dcec2e6087adfbc50626b00658e76832e6d0d3f752102b0933e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/0165551515572528$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/0165551515572528$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>314,777,781,21800,27905,27906,43602,43603</link.rule.ids></links><search><creatorcontrib>Karanikolas, Nikitas N.</creatorcontrib><title>Supervised learning for building stemmers</title><title>Journal of information science</title><description>This work is part of a project aiming to define a methodology for building simple but robust stemmers, having primitive knowledge of the stemmer’s target language. The methodology starts with a very simple primary stemmer that simply removes the longest suffix (using the primitive knowledge – the list of available suffixes) that matches the ending of the examined word. Information retrieval (IR) experts express their arguments against the results of the primary stemmer. These (the experts’ arguments) are valuable knowledge that offer us the ability to apply supervised learning in order to automatically produce better stemmers (that conform to the arguments expressed by the IR experts). We also conduct an evaluation of our supervised learning-based methodology that builds stemmers for languages that the experts do not have knowledge on.</description><subject>Information retrieval</subject><subject>Language</subject><subject>Studies</subject><issn>0165-5515</issn><issn>1741-6485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxTAQhYMoWK_uXRZcuYhOkubRpVx8wQUX6rqkzfTSS18mreC_N6UuRJBZDMN3zhk4hFwyuGFM61tgSkrJ4kjNJTdHJGE6Y1RlRh6TZMF04afkLIQDAMhcZAm5fp1H9J9NQJe2aH3f9Pu0Hnxazk3rliNM2HXowzk5qW0b8OJnb8j7w_3b9onuXh6ft3c7WgklJupybsrcWs1qMK7CiqMCo62ry0qC4qoEUNKgVkZE5MCJWkvOgJeQC4FiQ67W3NEPHzOGqTgMs-_jy4JFD4OcSx1VsKoqP4TgsS5G33TWfxUMiqWQ4m8h0UJXS7B7_BX6n_4b9X1eEw</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Karanikolas, Nikitas N.</creator><general>SAGE Publications</general><general>Bowker-Saur Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150601</creationdate><title>Supervised learning for building stemmers</title><author>Karanikolas, Nikitas N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-d928b9aa71f08dcec2e6087adfbc50626b00658e76832e6d0d3f752102b0933e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Information retrieval</topic><topic>Language</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karanikolas, Nikitas N.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of information science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karanikolas, Nikitas N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised learning for building stemmers</atitle><jtitle>Journal of information science</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>41</volume><issue>3</issue><spage>315</spage><epage>328</epage><pages>315-328</pages><issn>0165-5515</issn><eissn>1741-6485</eissn><coden>JISCDI</coden><abstract>This work is part of a project aiming to define a methodology for building simple but robust stemmers, having primitive knowledge of the stemmer’s target language. The methodology starts with a very simple primary stemmer that simply removes the longest suffix (using the primitive knowledge – the list of available suffixes) that matches the ending of the examined word. Information retrieval (IR) experts express their arguments against the results of the primary stemmer. These (the experts’ arguments) are valuable knowledge that offer us the ability to apply supervised learning in order to automatically produce better stemmers (that conform to the arguments expressed by the IR experts). We also conduct an evaluation of our supervised learning-based methodology that builds stemmers for languages that the experts do not have knowledge on.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0165551515572528</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-5515
ispartof Journal of information science, 2015-06, Vol.41 (3), p.315-328
issn 0165-5515
1741-6485
language eng
recordid cdi_proquest_journals_1683109257
source SAGE Complete A-Z List
subjects Information retrieval
Language
Studies
title Supervised learning for building stemmers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T06%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20learning%20for%20building%20stemmers&rft.jtitle=Journal%20of%20information%20science&rft.au=Karanikolas,%20Nikitas%20N.&rft.date=2015-06-01&rft.volume=41&rft.issue=3&rft.spage=315&rft.epage=328&rft.pages=315-328&rft.issn=0165-5515&rft.eissn=1741-6485&rft.coden=JISCDI&rft_id=info:doi/10.1177/0165551515572528&rft_dat=%3Cproquest_cross%3E3694971601%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1683109257&rft_id=info:pmid/&rft_sage_id=10.1177_0165551515572528&rfr_iscdi=true