Accounting for Nonrandomly Sampled Data in Nonlinear Regression

We analyze data that are "cherry picked" (i.e., nonrandomly sampled) from a population and are then used for regression modeling and prediction. Nonrandom data are encountered in numerous situations, and the application of standard statistical methods developed for random samples can easil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quality engineering 2015-04, Vol.27 (2), p.168-176
Hauptverfasser: Picard, R. R., Hamada, M. S., Hemphill, G. M., Hackenberg, R. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 176
container_issue 2
container_start_page 168
container_title Quality engineering
container_volume 27
creator Picard, R. R.
Hamada, M. S.
Hemphill, G. M.
Hackenberg, R. E.
description We analyze data that are "cherry picked" (i.e., nonrandomly sampled) from a population and are then used for regression modeling and prediction. Nonrandom data are encountered in numerous situations, and the application of standard statistical methods developed for random samples can easily lead to incorrect conclusions. A case study is presented to illustrate the related issues, as well as the repercussions of erroneously ignoring the nonrandom sampling.
doi_str_mv 10.1080/08982112.2014.933979
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1682233050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3690789861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-708084f5876e3371974e8ba8a50c4ab111d4867a93b2298410006e863bf55d7c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBywisU6xPXZsr6qqPKUKJB5ry0mcylViFzsV6t-TKLBlNYs5987oIHRN8IJgiW-xVJISQhcUE7ZQAEqoEzQjHGjOKKWnaDYi-cico4uUdhgTKRXM0HJVVeHge-e3WRNi9hJ8NL4OXXvM3k23b22d3ZneZM6Pu9Z5a2L2ZrfRpuSCv0RnjWmTvfqdc_T5cP-xfso3r4_P69UmrwB4n4vhTckaLkVhAQRRgllZGmk4rpgpCSE1k4UwCkpKlWQEY1xYWUDZcF6LCuboZurdx_B1sKnXu3CIfjipSSEpBcAcDxSbqCqGlKJt9D66zsSjJliPqvSfKj2q0pOqIbacYs4PDjrzHWJb694c2xCbQUflkoZ_G34Ai5ptjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682233050</pqid></control><display><type>article</type><title>Accounting for Nonrandomly Sampled Data in Nonlinear Regression</title><source>Business Source Complete</source><creator>Picard, R. R. ; Hamada, M. S. ; Hemphill, G. M. ; Hackenberg, R. E.</creator><creatorcontrib>Picard, R. R. ; Hamada, M. S. ; Hemphill, G. M. ; Hackenberg, R. E.</creatorcontrib><description>We analyze data that are "cherry picked" (i.e., nonrandomly sampled) from a population and are then used for regression modeling and prediction. Nonrandom data are encountered in numerous situations, and the application of standard statistical methods developed for random samples can easily lead to incorrect conclusions. A case study is presented to illustrate the related issues, as well as the repercussions of erroneously ignoring the nonrandom sampling.</description><identifier>ISSN: 0898-2112</identifier><identifier>EISSN: 1532-4222</identifier><identifier>DOI: 10.1080/08982112.2014.933979</identifier><language>eng</language><publisher>Milwaukee: Taylor &amp; Francis</publisher><subject>Bayesian inference ; mixture distribution ; order statistics ; Quality control ; Random number sampling ; ranked set sampling ; ranking error ; Regression analysis ; Statistical methods ; Studies</subject><ispartof>Quality engineering, 2015-04, Vol.27 (2), p.168-176</ispartof><rights>Copyright © Taylor &amp; Francis Group, LLC 2015</rights><rights>Copyright Taylor &amp; Francis Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-708084f5876e3371974e8ba8a50c4ab111d4867a93b2298410006e863bf55d7c3</citedby><cites>FETCH-LOGICAL-c335t-708084f5876e3371974e8ba8a50c4ab111d4867a93b2298410006e863bf55d7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Picard, R. R.</creatorcontrib><creatorcontrib>Hamada, M. S.</creatorcontrib><creatorcontrib>Hemphill, G. M.</creatorcontrib><creatorcontrib>Hackenberg, R. E.</creatorcontrib><title>Accounting for Nonrandomly Sampled Data in Nonlinear Regression</title><title>Quality engineering</title><description>We analyze data that are "cherry picked" (i.e., nonrandomly sampled) from a population and are then used for regression modeling and prediction. Nonrandom data are encountered in numerous situations, and the application of standard statistical methods developed for random samples can easily lead to incorrect conclusions. A case study is presented to illustrate the related issues, as well as the repercussions of erroneously ignoring the nonrandom sampling.</description><subject>Bayesian inference</subject><subject>mixture distribution</subject><subject>order statistics</subject><subject>Quality control</subject><subject>Random number sampling</subject><subject>ranked set sampling</subject><subject>ranking error</subject><subject>Regression analysis</subject><subject>Statistical methods</subject><subject>Studies</subject><issn>0898-2112</issn><issn>1532-4222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBywisU6xPXZsr6qqPKUKJB5ry0mcylViFzsV6t-TKLBlNYs5987oIHRN8IJgiW-xVJISQhcUE7ZQAEqoEzQjHGjOKKWnaDYi-cico4uUdhgTKRXM0HJVVeHge-e3WRNi9hJ8NL4OXXvM3k23b22d3ZneZM6Pu9Z5a2L2ZrfRpuSCv0RnjWmTvfqdc_T5cP-xfso3r4_P69UmrwB4n4vhTckaLkVhAQRRgllZGmk4rpgpCSE1k4UwCkpKlWQEY1xYWUDZcF6LCuboZurdx_B1sKnXu3CIfjipSSEpBcAcDxSbqCqGlKJt9D66zsSjJliPqvSfKj2q0pOqIbacYs4PDjrzHWJb694c2xCbQUflkoZ_G34Ai5ptjg</recordid><startdate>20150403</startdate><enddate>20150403</enddate><creator>Picard, R. R.</creator><creator>Hamada, M. S.</creator><creator>Hemphill, G. M.</creator><creator>Hackenberg, R. E.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>U9A</scope></search><sort><creationdate>20150403</creationdate><title>Accounting for Nonrandomly Sampled Data in Nonlinear Regression</title><author>Picard, R. R. ; Hamada, M. S. ; Hemphill, G. M. ; Hackenberg, R. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-708084f5876e3371974e8ba8a50c4ab111d4867a93b2298410006e863bf55d7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayesian inference</topic><topic>mixture distribution</topic><topic>order statistics</topic><topic>Quality control</topic><topic>Random number sampling</topic><topic>ranked set sampling</topic><topic>ranking error</topic><topic>Regression analysis</topic><topic>Statistical methods</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Picard, R. R.</creatorcontrib><creatorcontrib>Hamada, M. S.</creatorcontrib><creatorcontrib>Hemphill, G. M.</creatorcontrib><creatorcontrib>Hackenberg, R. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Quality engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Picard, R. R.</au><au>Hamada, M. S.</au><au>Hemphill, G. M.</au><au>Hackenberg, R. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accounting for Nonrandomly Sampled Data in Nonlinear Regression</atitle><jtitle>Quality engineering</jtitle><date>2015-04-03</date><risdate>2015</risdate><volume>27</volume><issue>2</issue><spage>168</spage><epage>176</epage><pages>168-176</pages><issn>0898-2112</issn><eissn>1532-4222</eissn><abstract>We analyze data that are "cherry picked" (i.e., nonrandomly sampled) from a population and are then used for regression modeling and prediction. Nonrandom data are encountered in numerous situations, and the application of standard statistical methods developed for random samples can easily lead to incorrect conclusions. A case study is presented to illustrate the related issues, as well as the repercussions of erroneously ignoring the nonrandom sampling.</abstract><cop>Milwaukee</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/08982112.2014.933979</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0898-2112
ispartof Quality engineering, 2015-04, Vol.27 (2), p.168-176
issn 0898-2112
1532-4222
language eng
recordid cdi_proquest_journals_1682233050
source Business Source Complete
subjects Bayesian inference
mixture distribution
order statistics
Quality control
Random number sampling
ranked set sampling
ranking error
Regression analysis
Statistical methods
Studies
title Accounting for Nonrandomly Sampled Data in Nonlinear Regression
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accounting%20for%20Nonrandomly%20Sampled%20Data%20in%20Nonlinear%20Regression&rft.jtitle=Quality%20engineering&rft.au=Picard,%20R.%20R.&rft.date=2015-04-03&rft.volume=27&rft.issue=2&rft.spage=168&rft.epage=176&rft.pages=168-176&rft.issn=0898-2112&rft.eissn=1532-4222&rft_id=info:doi/10.1080/08982112.2014.933979&rft_dat=%3Cproquest_infor%3E3690789861%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1682233050&rft_id=info:pmid/&rfr_iscdi=true