Accounting for Nonrandomly Sampled Data in Nonlinear Regression
We analyze data that are "cherry picked" (i.e., nonrandomly sampled) from a population and are then used for regression modeling and prediction. Nonrandom data are encountered in numerous situations, and the application of standard statistical methods developed for random samples can easil...
Gespeichert in:
Veröffentlicht in: | Quality engineering 2015-04, Vol.27 (2), p.168-176 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 176 |
---|---|
container_issue | 2 |
container_start_page | 168 |
container_title | Quality engineering |
container_volume | 27 |
creator | Picard, R. R. Hamada, M. S. Hemphill, G. M. Hackenberg, R. E. |
description | We analyze data that are "cherry picked" (i.e., nonrandomly sampled) from a population and are then used for regression modeling and prediction. Nonrandom data are encountered in numerous situations, and the application of standard statistical methods developed for random samples can easily lead to incorrect conclusions. A case study is presented to illustrate the related issues, as well as the repercussions of erroneously ignoring the nonrandom sampling. |
doi_str_mv | 10.1080/08982112.2014.933979 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1682233050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3690789861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-708084f5876e3371974e8ba8a50c4ab111d4867a93b2298410006e863bf55d7c3</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EEqXwBywisU6xPXZsr6qqPKUKJB5ry0mcylViFzsV6t-TKLBlNYs5987oIHRN8IJgiW-xVJISQhcUE7ZQAEqoEzQjHGjOKKWnaDYi-cico4uUdhgTKRXM0HJVVeHge-e3WRNi9hJ8NL4OXXvM3k23b22d3ZneZM6Pu9Z5a2L2ZrfRpuSCv0RnjWmTvfqdc_T5cP-xfso3r4_P69UmrwB4n4vhTckaLkVhAQRRgllZGmk4rpgpCSE1k4UwCkpKlWQEY1xYWUDZcF6LCuboZurdx_B1sKnXu3CIfjipSSEpBcAcDxSbqCqGlKJt9D66zsSjJliPqvSfKj2q0pOqIbacYs4PDjrzHWJb694c2xCbQUflkoZ_G34Ai5ptjg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1682233050</pqid></control><display><type>article</type><title>Accounting for Nonrandomly Sampled Data in Nonlinear Regression</title><source>Business Source Complete</source><creator>Picard, R. R. ; Hamada, M. S. ; Hemphill, G. M. ; Hackenberg, R. E.</creator><creatorcontrib>Picard, R. R. ; Hamada, M. S. ; Hemphill, G. M. ; Hackenberg, R. E.</creatorcontrib><description>We analyze data that are "cherry picked" (i.e., nonrandomly sampled) from a population and are then used for regression modeling and prediction. Nonrandom data are encountered in numerous situations, and the application of standard statistical methods developed for random samples can easily lead to incorrect conclusions. A case study is presented to illustrate the related issues, as well as the repercussions of erroneously ignoring the nonrandom sampling.</description><identifier>ISSN: 0898-2112</identifier><identifier>EISSN: 1532-4222</identifier><identifier>DOI: 10.1080/08982112.2014.933979</identifier><language>eng</language><publisher>Milwaukee: Taylor & Francis</publisher><subject>Bayesian inference ; mixture distribution ; order statistics ; Quality control ; Random number sampling ; ranked set sampling ; ranking error ; Regression analysis ; Statistical methods ; Studies</subject><ispartof>Quality engineering, 2015-04, Vol.27 (2), p.168-176</ispartof><rights>Copyright © Taylor & Francis Group, LLC 2015</rights><rights>Copyright Taylor & Francis Ltd. 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-708084f5876e3371974e8ba8a50c4ab111d4867a93b2298410006e863bf55d7c3</citedby><cites>FETCH-LOGICAL-c335t-708084f5876e3371974e8ba8a50c4ab111d4867a93b2298410006e863bf55d7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Picard, R. R.</creatorcontrib><creatorcontrib>Hamada, M. S.</creatorcontrib><creatorcontrib>Hemphill, G. M.</creatorcontrib><creatorcontrib>Hackenberg, R. E.</creatorcontrib><title>Accounting for Nonrandomly Sampled Data in Nonlinear Regression</title><title>Quality engineering</title><description>We analyze data that are "cherry picked" (i.e., nonrandomly sampled) from a population and are then used for regression modeling and prediction. Nonrandom data are encountered in numerous situations, and the application of standard statistical methods developed for random samples can easily lead to incorrect conclusions. A case study is presented to illustrate the related issues, as well as the repercussions of erroneously ignoring the nonrandom sampling.</description><subject>Bayesian inference</subject><subject>mixture distribution</subject><subject>order statistics</subject><subject>Quality control</subject><subject>Random number sampling</subject><subject>ranked set sampling</subject><subject>ranking error</subject><subject>Regression analysis</subject><subject>Statistical methods</subject><subject>Studies</subject><issn>0898-2112</issn><issn>1532-4222</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRS0EEqXwBywisU6xPXZsr6qqPKUKJB5ry0mcylViFzsV6t-TKLBlNYs5987oIHRN8IJgiW-xVJISQhcUE7ZQAEqoEzQjHGjOKKWnaDYi-cico4uUdhgTKRXM0HJVVeHge-e3WRNi9hJ8NL4OXXvM3k23b22d3ZneZM6Pu9Z5a2L2ZrfRpuSCv0RnjWmTvfqdc_T5cP-xfso3r4_P69UmrwB4n4vhTckaLkVhAQRRgllZGmk4rpgpCSE1k4UwCkpKlWQEY1xYWUDZcF6LCuboZurdx_B1sKnXu3CIfjipSSEpBcAcDxSbqCqGlKJt9D66zsSjJliPqvSfKj2q0pOqIbacYs4PDjrzHWJb694c2xCbQUflkoZ_G34Ai5ptjg</recordid><startdate>20150403</startdate><enddate>20150403</enddate><creator>Picard, R. R.</creator><creator>Hamada, M. S.</creator><creator>Hemphill, G. M.</creator><creator>Hackenberg, R. E.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>U9A</scope></search><sort><creationdate>20150403</creationdate><title>Accounting for Nonrandomly Sampled Data in Nonlinear Regression</title><author>Picard, R. R. ; Hamada, M. S. ; Hemphill, G. M. ; Hackenberg, R. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-708084f5876e3371974e8ba8a50c4ab111d4867a93b2298410006e863bf55d7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayesian inference</topic><topic>mixture distribution</topic><topic>order statistics</topic><topic>Quality control</topic><topic>Random number sampling</topic><topic>ranked set sampling</topic><topic>ranking error</topic><topic>Regression analysis</topic><topic>Statistical methods</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Picard, R. R.</creatorcontrib><creatorcontrib>Hamada, M. S.</creatorcontrib><creatorcontrib>Hemphill, G. M.</creatorcontrib><creatorcontrib>Hackenberg, R. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Quality engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Picard, R. R.</au><au>Hamada, M. S.</au><au>Hemphill, G. M.</au><au>Hackenberg, R. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Accounting for Nonrandomly Sampled Data in Nonlinear Regression</atitle><jtitle>Quality engineering</jtitle><date>2015-04-03</date><risdate>2015</risdate><volume>27</volume><issue>2</issue><spage>168</spage><epage>176</epage><pages>168-176</pages><issn>0898-2112</issn><eissn>1532-4222</eissn><abstract>We analyze data that are "cherry picked" (i.e., nonrandomly sampled) from a population and are then used for regression modeling and prediction. Nonrandom data are encountered in numerous situations, and the application of standard statistical methods developed for random samples can easily lead to incorrect conclusions. A case study is presented to illustrate the related issues, as well as the repercussions of erroneously ignoring the nonrandom sampling.</abstract><cop>Milwaukee</cop><pub>Taylor & Francis</pub><doi>10.1080/08982112.2014.933979</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-2112 |
ispartof | Quality engineering, 2015-04, Vol.27 (2), p.168-176 |
issn | 0898-2112 1532-4222 |
language | eng |
recordid | cdi_proquest_journals_1682233050 |
source | Business Source Complete |
subjects | Bayesian inference mixture distribution order statistics Quality control Random number sampling ranked set sampling ranking error Regression analysis Statistical methods Studies |
title | Accounting for Nonrandomly Sampled Data in Nonlinear Regression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T10%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Accounting%20for%20Nonrandomly%20Sampled%20Data%20in%20Nonlinear%20Regression&rft.jtitle=Quality%20engineering&rft.au=Picard,%20R.%20R.&rft.date=2015-04-03&rft.volume=27&rft.issue=2&rft.spage=168&rft.epage=176&rft.pages=168-176&rft.issn=0898-2112&rft.eissn=1532-4222&rft_id=info:doi/10.1080/08982112.2014.933979&rft_dat=%3Cproquest_infor%3E3690789861%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1682233050&rft_id=info:pmid/&rfr_iscdi=true |