Genetic map and QTL controlling fiber quality traits in upland cotton (Gossypium hirsutum L.)

Cotton is a leading natural fiber crop in the textile industry worldwide. The improvement of cotton fiber quality has become more important because of changes in spinning technology and ever-increasing demands. Mapping quantitative trait locus (QTL) for fiber quality traits will enable molecular mar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Euphytica 2015-06, Vol.203 (3), p.615-628
Hauptverfasser: Tan, Zhaoyun, Fang, Xiaomei, Tang, Shiyi, Zhang, Jian, Liu, Dajun, Teng, Zhonghua, Li, Ling, Ni, Huijuan, Zheng, Fengmin, Liu, Dexin, Zhang, Tingfu, Paterson, Andrew H., Zhang, Zhengsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 628
container_issue 3
container_start_page 615
container_title Euphytica
container_volume 203
creator Tan, Zhaoyun
Fang, Xiaomei
Tang, Shiyi
Zhang, Jian
Liu, Dajun
Teng, Zhonghua
Li, Ling
Ni, Huijuan
Zheng, Fengmin
Liu, Dexin
Zhang, Tingfu
Paterson, Andrew H.
Zhang, Zhengsheng
description Cotton is a leading natural fiber crop in the textile industry worldwide. The improvement of cotton fiber quality has become more important because of changes in spinning technology and ever-increasing demands. Mapping quantitative trait locus (QTL) for fiber quality traits will enable molecular marker-assisted selection (MAS) to improve fiber quality and provide an access to reveal the molecular mechanism of fiber development. A high-density intraspecific genetic map is constructed based on an upland cotton recombinant inbred line (RIL) population. A total of 25,313 SSR primer pairs were used and yielded 1,333 polymorphic markers, with a polymorphic ratio of 5.3 %, producing 1,382 polymorphic loci in the RIL population. The map comprised 1,274 loci and spanned 3,076.4 cM with an average distance of 2.41 cM between two adjacent markers. Based on the phenotypic data of fiber quality traits from five environments, a total of 59 QTL were detected. These QTL comprised 15 QTL for fiber upper half mean length, 10 QTL for fiber length uniformity, 9 QTL for fiber strength, 10 QTL for fiber elongation and 15 QTL for fiber micronaire, respectively. The genetic map constructed in this study is the most detailed upland cotton intraspecific map based on SSR markers to date, and could be used to construct consensus map or as reference genetic map for tetraploid cotton genome assembly. Stable QTL identified across multiple environments reflect some important and favorable alleles shaping fiber quality, and they are valuable candidate alleles for MAS breeding projects as well as for gene function research related to cotton fiber development and quality improvement.
doi_str_mv 10.1007/s10681-014-1288-9
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1681855715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A714077082</galeid><sourcerecordid>A714077082</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-d0666d84cbfcf96e17c43e596290a11a999993c24a4da16277113f22346ad95d3</originalsourceid><addsrcrecordid>eNp1kEGP2yAQhdGqlZpm9wf0htRLe3B2Bhuwj9GqTStFWq2UHleIYJwlcrAD-JB_v1juoZfCATS8b5j3CPmCsEEA-RgRRI0FYFUgq-uiuSMr5LIsOAj4QFYwv7CyFJ_I5xjPANBIDivyurPeJmfoRY9U-5a-HPbUDD6Foe-dP9HOHW2g10n3Lt1oCtqlSJ2n09jPcjOkNHj6bTfEeBvddKFvLsQp5ct-8_2efOx0H-3D33NN_vz8cXj6Veyfd7-ftvvCVIynogUhRFtX5tiZrhEWpalKyxvBGtCIuplXaVilq1ajYFIilh1jZSV02_C2XJOvS98xDNfJxqTOwxR8_lJhjqXmXCLPqs2iOuneKue7Idsxebf24rJn27lc30qsQEqoWQZwAUzI9oLt1BjcRYebQlBz7GqJXeVw1Ry7ajLDFiZmrT_Z8M8o_4XeAerwg6k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681855715</pqid></control><display><type>article</type><title>Genetic map and QTL controlling fiber quality traits in upland cotton (Gossypium hirsutum L.)</title><source>SpringerLink Journals - AutoHoldings</source><creator>Tan, Zhaoyun ; Fang, Xiaomei ; Tang, Shiyi ; Zhang, Jian ; Liu, Dajun ; Teng, Zhonghua ; Li, Ling ; Ni, Huijuan ; Zheng, Fengmin ; Liu, Dexin ; Zhang, Tingfu ; Paterson, Andrew H. ; Zhang, Zhengsheng</creator><creatorcontrib>Tan, Zhaoyun ; Fang, Xiaomei ; Tang, Shiyi ; Zhang, Jian ; Liu, Dajun ; Teng, Zhonghua ; Li, Ling ; Ni, Huijuan ; Zheng, Fengmin ; Liu, Dexin ; Zhang, Tingfu ; Paterson, Andrew H. ; Zhang, Zhengsheng</creatorcontrib><description>Cotton is a leading natural fiber crop in the textile industry worldwide. The improvement of cotton fiber quality has become more important because of changes in spinning technology and ever-increasing demands. Mapping quantitative trait locus (QTL) for fiber quality traits will enable molecular marker-assisted selection (MAS) to improve fiber quality and provide an access to reveal the molecular mechanism of fiber development. A high-density intraspecific genetic map is constructed based on an upland cotton recombinant inbred line (RIL) population. A total of 25,313 SSR primer pairs were used and yielded 1,333 polymorphic markers, with a polymorphic ratio of 5.3 %, producing 1,382 polymorphic loci in the RIL population. The map comprised 1,274 loci and spanned 3,076.4 cM with an average distance of 2.41 cM between two adjacent markers. Based on the phenotypic data of fiber quality traits from five environments, a total of 59 QTL were detected. These QTL comprised 15 QTL for fiber upper half mean length, 10 QTL for fiber length uniformity, 9 QTL for fiber strength, 10 QTL for fiber elongation and 15 QTL for fiber micronaire, respectively. The genetic map constructed in this study is the most detailed upland cotton intraspecific map based on SSR markers to date, and could be used to construct consensus map or as reference genetic map for tetraploid cotton genome assembly. Stable QTL identified across multiple environments reflect some important and favorable alleles shaping fiber quality, and they are valuable candidate alleles for MAS breeding projects as well as for gene function research related to cotton fiber development and quality improvement.</description><identifier>ISSN: 0014-2336</identifier><identifier>EISSN: 1573-5060</identifier><identifier>DOI: 10.1007/s10681-014-1288-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biomedical and Life Sciences ; Biotechnology ; Cotton ; Fibers ; Gene loci ; Gene mapping ; Genes ; Genetic markers ; Genetic research ; Genomics ; Life Sciences ; Plant Genetics and Genomics ; Plant Pathology ; Plant Physiology ; Plant Sciences ; Quantitative genetics ; Textile fabrics ; Textile fibers ; Textile industry</subject><ispartof>Euphytica, 2015-06, Vol.203 (3), p.615-628</ispartof><rights>Springer Science+Business Media Dordrecht 2014</rights><rights>COPYRIGHT 2015 Springer</rights><rights>Springer Science+Business Media Dordrecht 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-d0666d84cbfcf96e17c43e596290a11a999993c24a4da16277113f22346ad95d3</citedby><cites>FETCH-LOGICAL-c425t-d0666d84cbfcf96e17c43e596290a11a999993c24a4da16277113f22346ad95d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10681-014-1288-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10681-014-1288-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Tan, Zhaoyun</creatorcontrib><creatorcontrib>Fang, Xiaomei</creatorcontrib><creatorcontrib>Tang, Shiyi</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Liu, Dajun</creatorcontrib><creatorcontrib>Teng, Zhonghua</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Ni, Huijuan</creatorcontrib><creatorcontrib>Zheng, Fengmin</creatorcontrib><creatorcontrib>Liu, Dexin</creatorcontrib><creatorcontrib>Zhang, Tingfu</creatorcontrib><creatorcontrib>Paterson, Andrew H.</creatorcontrib><creatorcontrib>Zhang, Zhengsheng</creatorcontrib><title>Genetic map and QTL controlling fiber quality traits in upland cotton (Gossypium hirsutum L.)</title><title>Euphytica</title><addtitle>Euphytica</addtitle><description>Cotton is a leading natural fiber crop in the textile industry worldwide. The improvement of cotton fiber quality has become more important because of changes in spinning technology and ever-increasing demands. Mapping quantitative trait locus (QTL) for fiber quality traits will enable molecular marker-assisted selection (MAS) to improve fiber quality and provide an access to reveal the molecular mechanism of fiber development. A high-density intraspecific genetic map is constructed based on an upland cotton recombinant inbred line (RIL) population. A total of 25,313 SSR primer pairs were used and yielded 1,333 polymorphic markers, with a polymorphic ratio of 5.3 %, producing 1,382 polymorphic loci in the RIL population. The map comprised 1,274 loci and spanned 3,076.4 cM with an average distance of 2.41 cM between two adjacent markers. Based on the phenotypic data of fiber quality traits from five environments, a total of 59 QTL were detected. These QTL comprised 15 QTL for fiber upper half mean length, 10 QTL for fiber length uniformity, 9 QTL for fiber strength, 10 QTL for fiber elongation and 15 QTL for fiber micronaire, respectively. The genetic map constructed in this study is the most detailed upland cotton intraspecific map based on SSR markers to date, and could be used to construct consensus map or as reference genetic map for tetraploid cotton genome assembly. Stable QTL identified across multiple environments reflect some important and favorable alleles shaping fiber quality, and they are valuable candidate alleles for MAS breeding projects as well as for gene function research related to cotton fiber development and quality improvement.</description><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cotton</subject><subject>Fibers</subject><subject>Gene loci</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Genetic markers</subject><subject>Genetic research</subject><subject>Genomics</subject><subject>Life Sciences</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Pathology</subject><subject>Plant Physiology</subject><subject>Plant Sciences</subject><subject>Quantitative genetics</subject><subject>Textile fabrics</subject><subject>Textile fibers</subject><subject>Textile industry</subject><issn>0014-2336</issn><issn>1573-5060</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEGP2yAQhdGqlZpm9wf0htRLe3B2Bhuwj9GqTStFWq2UHleIYJwlcrAD-JB_v1juoZfCATS8b5j3CPmCsEEA-RgRRI0FYFUgq-uiuSMr5LIsOAj4QFYwv7CyFJ_I5xjPANBIDivyurPeJmfoRY9U-5a-HPbUDD6Foe-dP9HOHW2g10n3Lt1oCtqlSJ2n09jPcjOkNHj6bTfEeBvddKFvLsQp5ct-8_2efOx0H-3D33NN_vz8cXj6Veyfd7-ftvvCVIynogUhRFtX5tiZrhEWpalKyxvBGtCIuplXaVilq1ajYFIilh1jZSV02_C2XJOvS98xDNfJxqTOwxR8_lJhjqXmXCLPqs2iOuneKue7Idsxebf24rJn27lc30qsQEqoWQZwAUzI9oLt1BjcRYebQlBz7GqJXeVw1Ry7ajLDFiZmrT_Z8M8o_4XeAerwg6k</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Tan, Zhaoyun</creator><creator>Fang, Xiaomei</creator><creator>Tang, Shiyi</creator><creator>Zhang, Jian</creator><creator>Liu, Dajun</creator><creator>Teng, Zhonghua</creator><creator>Li, Ling</creator><creator>Ni, Huijuan</creator><creator>Zheng, Fengmin</creator><creator>Liu, Dexin</creator><creator>Zhang, Tingfu</creator><creator>Paterson, Andrew H.</creator><creator>Zhang, Zhengsheng</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SN</scope><scope>7SS</scope><scope>7T7</scope><scope>7TM</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>M2P</scope><scope>M7N</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope></search><sort><creationdate>20150601</creationdate><title>Genetic map and QTL controlling fiber quality traits in upland cotton (Gossypium hirsutum L.)</title><author>Tan, Zhaoyun ; Fang, Xiaomei ; Tang, Shiyi ; Zhang, Jian ; Liu, Dajun ; Teng, Zhonghua ; Li, Ling ; Ni, Huijuan ; Zheng, Fengmin ; Liu, Dexin ; Zhang, Tingfu ; Paterson, Andrew H. ; Zhang, Zhengsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-d0666d84cbfcf96e17c43e596290a11a999993c24a4da16277113f22346ad95d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cotton</topic><topic>Fibers</topic><topic>Gene loci</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Genetic markers</topic><topic>Genetic research</topic><topic>Genomics</topic><topic>Life Sciences</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Pathology</topic><topic>Plant Physiology</topic><topic>Plant Sciences</topic><topic>Quantitative genetics</topic><topic>Textile fabrics</topic><topic>Textile fibers</topic><topic>Textile industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Zhaoyun</creatorcontrib><creatorcontrib>Fang, Xiaomei</creatorcontrib><creatorcontrib>Tang, Shiyi</creatorcontrib><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Liu, Dajun</creatorcontrib><creatorcontrib>Teng, Zhonghua</creatorcontrib><creatorcontrib>Li, Ling</creatorcontrib><creatorcontrib>Ni, Huijuan</creatorcontrib><creatorcontrib>Zheng, Fengmin</creatorcontrib><creatorcontrib>Liu, Dexin</creatorcontrib><creatorcontrib>Zhang, Tingfu</creatorcontrib><creatorcontrib>Paterson, Andrew H.</creatorcontrib><creatorcontrib>Zhang, Zhengsheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Agricultural Science Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><jtitle>Euphytica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Zhaoyun</au><au>Fang, Xiaomei</au><au>Tang, Shiyi</au><au>Zhang, Jian</au><au>Liu, Dajun</au><au>Teng, Zhonghua</au><au>Li, Ling</au><au>Ni, Huijuan</au><au>Zheng, Fengmin</au><au>Liu, Dexin</au><au>Zhang, Tingfu</au><au>Paterson, Andrew H.</au><au>Zhang, Zhengsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic map and QTL controlling fiber quality traits in upland cotton (Gossypium hirsutum L.)</atitle><jtitle>Euphytica</jtitle><stitle>Euphytica</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>203</volume><issue>3</issue><spage>615</spage><epage>628</epage><pages>615-628</pages><issn>0014-2336</issn><eissn>1573-5060</eissn><abstract>Cotton is a leading natural fiber crop in the textile industry worldwide. The improvement of cotton fiber quality has become more important because of changes in spinning technology and ever-increasing demands. Mapping quantitative trait locus (QTL) for fiber quality traits will enable molecular marker-assisted selection (MAS) to improve fiber quality and provide an access to reveal the molecular mechanism of fiber development. A high-density intraspecific genetic map is constructed based on an upland cotton recombinant inbred line (RIL) population. A total of 25,313 SSR primer pairs were used and yielded 1,333 polymorphic markers, with a polymorphic ratio of 5.3 %, producing 1,382 polymorphic loci in the RIL population. The map comprised 1,274 loci and spanned 3,076.4 cM with an average distance of 2.41 cM between two adjacent markers. Based on the phenotypic data of fiber quality traits from five environments, a total of 59 QTL were detected. These QTL comprised 15 QTL for fiber upper half mean length, 10 QTL for fiber length uniformity, 9 QTL for fiber strength, 10 QTL for fiber elongation and 15 QTL for fiber micronaire, respectively. The genetic map constructed in this study is the most detailed upland cotton intraspecific map based on SSR markers to date, and could be used to construct consensus map or as reference genetic map for tetraploid cotton genome assembly. Stable QTL identified across multiple environments reflect some important and favorable alleles shaping fiber quality, and they are valuable candidate alleles for MAS breeding projects as well as for gene function research related to cotton fiber development and quality improvement.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10681-014-1288-9</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0014-2336
ispartof Euphytica, 2015-06, Vol.203 (3), p.615-628
issn 0014-2336
1573-5060
language eng
recordid cdi_proquest_journals_1681855715
source SpringerLink Journals - AutoHoldings
subjects Biomedical and Life Sciences
Biotechnology
Cotton
Fibers
Gene loci
Gene mapping
Genes
Genetic markers
Genetic research
Genomics
Life Sciences
Plant Genetics and Genomics
Plant Pathology
Plant Physiology
Plant Sciences
Quantitative genetics
Textile fabrics
Textile fibers
Textile industry
title Genetic map and QTL controlling fiber quality traits in upland cotton (Gossypium hirsutum L.)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T06%3A49%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20map%20and%20QTL%20controlling%20fiber%20quality%20traits%20in%20upland%20cotton%20(Gossypium%20hirsutum%20L.)&rft.jtitle=Euphytica&rft.au=Tan,%20Zhaoyun&rft.date=2015-06-01&rft.volume=203&rft.issue=3&rft.spage=615&rft.epage=628&rft.pages=615-628&rft.issn=0014-2336&rft.eissn=1573-5060&rft_id=info:doi/10.1007/s10681-014-1288-9&rft_dat=%3Cgale_proqu%3EA714077082%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1681855715&rft_id=info:pmid/&rft_galeid=A714077082&rfr_iscdi=true