Two-dimensional elasticity solution of elastic strips and beams made of functionally graded materials under tension and bending
This paper presents a theoretical approach to solve elastic problems of functionally graded materials (FGMs). For FGMs with exponential gradient, based on a two-dimensional theory of elasticity, a governing equation is derived by means of the Airy stress function method together with the strain comp...
Gespeichert in:
Veröffentlicht in: | Acta mechanica 2015-07, Vol.226 (7), p.2235-2253 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2253 |
---|---|
container_issue | 7 |
container_start_page | 2235 |
container_title | Acta mechanica |
container_volume | 226 |
creator | Chu, P. Li, X. -F. Wu, J. -X. Lee, K. Y. |
description | This paper presents a theoretical approach to solve elastic problems of functionally graded materials (FGMs). For FGMs with exponential gradient, based on a two-dimensional theory of elasticity, a governing equation is derived by means of the Airy stress function method together with the strain compatibility equation. Simple uniaxial tension and bending are solved. For an FGM layer with transversely and/or vertically varying material properties, stress distribution and strain field under simple tension are determined according to two different assumptions. The obtained results indicate that for a thin elastic layer of thickness-wise gradient as a transition zone linking two dissimilar materials, there is a horizontal displacement difference across the transition zone due to mismatch of the material properties. In particular, when the thickness of the FGM layer reduces to zero, the horizontal displacement difference has a severe mismatch across the interface of two perfectly bonded dissimilar materials. An FGM beam subjected to a bending moment is also analyzed. The normal stress exhibits a nonlinear distribution and may arrive at its maximum tensile stress inside the beam, not at the surface. The obtained elasticity solution is useful for better understanding of the mechanical behaviors of FGMs subjected to different combined loads. |
doi_str_mv | 10.1007/s00707-014-1294-y |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1681256409</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A452052930</galeid><sourcerecordid>A452052930</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-b2ca84af130ee2615036b85ce622aeb234eb4571fb6b57094ca71acff062b20c3</originalsourceid><addsrcrecordid>eNp1kUGLHCEQhSUkkMkmPyA3IWc3pa329HFZkmxgYS-7Z7HtcnDp1onahD7lr8dJbyCXICj1fF9VwSPkI4drDtB_Lu2CngGXjItBsu0VOXDNB6aHrn9NDgDAmRp6eEvelfLcKtFLfiC_Hn8mNoUFYwkp2pnibEsNLtSNljSvtak0-b8yLTWHc6E2TnREuxS62AkvBr9GV_-0mDd6yk2d2l_FHOxc6BonzLTuU17oOIV4ek_e-GbADy_vFXn6-uXx9o7dP3z7fntzz5wUqrJROHuU1vMOEIXmCjo9HpVDLYTFUXQSR6l67kc9qh4G6WzPrfMetBgFuO6KfNr7nnP6sWKp5jmtuW1bDNdHLpSWMDTX9e462RlNiD7VbF07Ey7BpYg-NP1GKgFKDB00gO-Ay6mUjN6cc1hs3gwHcwnG7MGYFoy5BGO2xoidKc0bT5j_WeW_0G8K5ZNl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1681256409</pqid></control><display><type>article</type><title>Two-dimensional elasticity solution of elastic strips and beams made of functionally graded materials under tension and bending</title><source>SpringerLink Journals</source><creator>Chu, P. ; Li, X. -F. ; Wu, J. -X. ; Lee, K. Y.</creator><creatorcontrib>Chu, P. ; Li, X. -F. ; Wu, J. -X. ; Lee, K. Y.</creatorcontrib><description>This paper presents a theoretical approach to solve elastic problems of functionally graded materials (FGMs). For FGMs with exponential gradient, based on a two-dimensional theory of elasticity, a governing equation is derived by means of the Airy stress function method together with the strain compatibility equation. Simple uniaxial tension and bending are solved. For an FGM layer with transversely and/or vertically varying material properties, stress distribution and strain field under simple tension are determined according to two different assumptions. The obtained results indicate that for a thin elastic layer of thickness-wise gradient as a transition zone linking two dissimilar materials, there is a horizontal displacement difference across the transition zone due to mismatch of the material properties. In particular, when the thickness of the FGM layer reduces to zero, the horizontal displacement difference has a severe mismatch across the interface of two perfectly bonded dissimilar materials. An FGM beam subjected to a bending moment is also analyzed. The normal stress exhibits a nonlinear distribution and may arrive at its maximum tensile stress inside the beam, not at the surface. The obtained elasticity solution is useful for better understanding of the mechanical behaviors of FGMs subjected to different combined loads.</description><identifier>ISSN: 0001-5970</identifier><identifier>EISSN: 1619-6937</identifier><identifier>DOI: 10.1007/s00707-014-1294-y</identifier><identifier>CODEN: AMHCAP</identifier><language>eng</language><publisher>Vienna: Springer Vienna</publisher><subject>Beamforming ; Bending ; Classical and Continuum Physics ; Control ; Dynamical Systems ; Elasticity ; Engineering ; Engineering Thermodynamics ; Heat and Mass Transfer ; Solid Mechanics ; Tension ; Theoretical and Applied Mechanics ; Vibration</subject><ispartof>Acta mechanica, 2015-07, Vol.226 (7), p.2235-2253</ispartof><rights>Springer-Verlag Wien 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-b2ca84af130ee2615036b85ce622aeb234eb4571fb6b57094ca71acff062b20c3</citedby><cites>FETCH-LOGICAL-c425t-b2ca84af130ee2615036b85ce622aeb234eb4571fb6b57094ca71acff062b20c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00707-014-1294-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00707-014-1294-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Chu, P.</creatorcontrib><creatorcontrib>Li, X. -F.</creatorcontrib><creatorcontrib>Wu, J. -X.</creatorcontrib><creatorcontrib>Lee, K. Y.</creatorcontrib><title>Two-dimensional elasticity solution of elastic strips and beams made of functionally graded materials under tension and bending</title><title>Acta mechanica</title><addtitle>Acta Mech</addtitle><description>This paper presents a theoretical approach to solve elastic problems of functionally graded materials (FGMs). For FGMs with exponential gradient, based on a two-dimensional theory of elasticity, a governing equation is derived by means of the Airy stress function method together with the strain compatibility equation. Simple uniaxial tension and bending are solved. For an FGM layer with transversely and/or vertically varying material properties, stress distribution and strain field under simple tension are determined according to two different assumptions. The obtained results indicate that for a thin elastic layer of thickness-wise gradient as a transition zone linking two dissimilar materials, there is a horizontal displacement difference across the transition zone due to mismatch of the material properties. In particular, when the thickness of the FGM layer reduces to zero, the horizontal displacement difference has a severe mismatch across the interface of two perfectly bonded dissimilar materials. An FGM beam subjected to a bending moment is also analyzed. The normal stress exhibits a nonlinear distribution and may arrive at its maximum tensile stress inside the beam, not at the surface. The obtained elasticity solution is useful for better understanding of the mechanical behaviors of FGMs subjected to different combined loads.</description><subject>Beamforming</subject><subject>Bending</subject><subject>Classical and Continuum Physics</subject><subject>Control</subject><subject>Dynamical Systems</subject><subject>Elasticity</subject><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Solid Mechanics</subject><subject>Tension</subject><subject>Theoretical and Applied Mechanics</subject><subject>Vibration</subject><issn>0001-5970</issn><issn>1619-6937</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUGLHCEQhSUkkMkmPyA3IWc3pa329HFZkmxgYS-7Z7HtcnDp1onahD7lr8dJbyCXICj1fF9VwSPkI4drDtB_Lu2CngGXjItBsu0VOXDNB6aHrn9NDgDAmRp6eEvelfLcKtFLfiC_Hn8mNoUFYwkp2pnibEsNLtSNljSvtak0-b8yLTWHc6E2TnREuxS62AkvBr9GV_-0mDd6yk2d2l_FHOxc6BonzLTuU17oOIV4ek_e-GbADy_vFXn6-uXx9o7dP3z7fntzz5wUqrJROHuU1vMOEIXmCjo9HpVDLYTFUXQSR6l67kc9qh4G6WzPrfMetBgFuO6KfNr7nnP6sWKp5jmtuW1bDNdHLpSWMDTX9e462RlNiD7VbF07Ey7BpYg-NP1GKgFKDB00gO-Ay6mUjN6cc1hs3gwHcwnG7MGYFoy5BGO2xoidKc0bT5j_WeW_0G8K5ZNl</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Chu, P.</creator><creator>Li, X. -F.</creator><creator>Wu, J. -X.</creator><creator>Lee, K. Y.</creator><general>Springer Vienna</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>20150701</creationdate><title>Two-dimensional elasticity solution of elastic strips and beams made of functionally graded materials under tension and bending</title><author>Chu, P. ; Li, X. -F. ; Wu, J. -X. ; Lee, K. Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-b2ca84af130ee2615036b85ce622aeb234eb4571fb6b57094ca71acff062b20c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Beamforming</topic><topic>Bending</topic><topic>Classical and Continuum Physics</topic><topic>Control</topic><topic>Dynamical Systems</topic><topic>Elasticity</topic><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Solid Mechanics</topic><topic>Tension</topic><topic>Theoretical and Applied Mechanics</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chu, P.</creatorcontrib><creatorcontrib>Li, X. -F.</creatorcontrib><creatorcontrib>Wu, J. -X.</creatorcontrib><creatorcontrib>Lee, K. Y.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Acta mechanica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chu, P.</au><au>Li, X. -F.</au><au>Wu, J. -X.</au><au>Lee, K. Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-dimensional elasticity solution of elastic strips and beams made of functionally graded materials under tension and bending</atitle><jtitle>Acta mechanica</jtitle><stitle>Acta Mech</stitle><date>2015-07-01</date><risdate>2015</risdate><volume>226</volume><issue>7</issue><spage>2235</spage><epage>2253</epage><pages>2235-2253</pages><issn>0001-5970</issn><eissn>1619-6937</eissn><coden>AMHCAP</coden><abstract>This paper presents a theoretical approach to solve elastic problems of functionally graded materials (FGMs). For FGMs with exponential gradient, based on a two-dimensional theory of elasticity, a governing equation is derived by means of the Airy stress function method together with the strain compatibility equation. Simple uniaxial tension and bending are solved. For an FGM layer with transversely and/or vertically varying material properties, stress distribution and strain field under simple tension are determined according to two different assumptions. The obtained results indicate that for a thin elastic layer of thickness-wise gradient as a transition zone linking two dissimilar materials, there is a horizontal displacement difference across the transition zone due to mismatch of the material properties. In particular, when the thickness of the FGM layer reduces to zero, the horizontal displacement difference has a severe mismatch across the interface of two perfectly bonded dissimilar materials. An FGM beam subjected to a bending moment is also analyzed. The normal stress exhibits a nonlinear distribution and may arrive at its maximum tensile stress inside the beam, not at the surface. The obtained elasticity solution is useful for better understanding of the mechanical behaviors of FGMs subjected to different combined loads.</abstract><cop>Vienna</cop><pub>Springer Vienna</pub><doi>10.1007/s00707-014-1294-y</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-5970 |
ispartof | Acta mechanica, 2015-07, Vol.226 (7), p.2235-2253 |
issn | 0001-5970 1619-6937 |
language | eng |
recordid | cdi_proquest_journals_1681256409 |
source | SpringerLink Journals |
subjects | Beamforming Bending Classical and Continuum Physics Control Dynamical Systems Elasticity Engineering Engineering Thermodynamics Heat and Mass Transfer Solid Mechanics Tension Theoretical and Applied Mechanics Vibration |
title | Two-dimensional elasticity solution of elastic strips and beams made of functionally graded materials under tension and bending |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T04%3A28%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-dimensional%20elasticity%20solution%20of%20elastic%20strips%20and%20beams%20made%20of%20functionally%20graded%20materials%20under%20tension%20and%20bending&rft.jtitle=Acta%20mechanica&rft.au=Chu,%20P.&rft.date=2015-07-01&rft.volume=226&rft.issue=7&rft.spage=2235&rft.epage=2253&rft.pages=2235-2253&rft.issn=0001-5970&rft.eissn=1619-6937&rft.coden=AMHCAP&rft_id=info:doi/10.1007/s00707-014-1294-y&rft_dat=%3Cgale_proqu%3EA452052930%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1681256409&rft_id=info:pmid/&rft_galeid=A452052930&rfr_iscdi=true |