A Mechanised Proof of Gödel’s Incompleteness Theorems Using Nominal Isabelle

An Isabelle/HOL formalisation of Gödel’s two incompleteness theorems is presented. The work follows Świerczkowski’s detailed proof of the theorems using hereditarily finite (HF) set theory (Dissertationes Mathematicae 422 , 1–58, 2003 ). Avoiding the usual arithmetical encodings of syntax eliminates...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of automated reasoning 2015-06, Vol.55 (1), p.1-37
1. Verfasser: Paulson, Lawrence C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 1
container_start_page 1
container_title Journal of automated reasoning
container_volume 55
creator Paulson, Lawrence C.
description An Isabelle/HOL formalisation of Gödel’s two incompleteness theorems is presented. The work follows Świerczkowski’s detailed proof of the theorems using hereditarily finite (HF) set theory (Dissertationes Mathematicae 422 , 1–58, 2003 ). Avoiding the usual arithmetical encodings of syntax eliminates the necessity to formalise elementary number theory within an embedded logical calculus. The Isabelle formalisation uses two separate treatments of variable binding: the nominal package (Logical Methods in Computer Science 8 (2:14), 1–35, 2012 ) is shown to scale to a development of this complexity, while de Bruijn indices (Indagationes Mathematicae 34 , 381–392, 1972 ) turn out to be ideal for coding syntax. Critical details of the Isabelle proof are described, in particular gaps and errors found in the literature.
doi_str_mv 10.1007/s10817-015-9322-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1680662361</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3683385421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-e5513e62fe161f08c94b960d607e6768c6a50863a5ece6d7babc7a05ac9d17143</originalsourceid><addsrcrecordid>eNp1kEFOwzAQRS0EEqVwAHaWWBvGcWM7y6qCUqlQFu3acpxJmyqJi90u2HENLsIFuAknIVVYsEEaaTb_fc08Qq453HIAdRc5aK4Y8JRlIkmYPiEDnirBQCo4JQPgUjM1EuKcXMS4BQDBIRuQxZg-odvYtopY0JfgfUm7mX59Flh_v39EOmudb3Y17rHFGOlygz5gE-kqVu2aPvumam1NZ9HmWNd4Sc5KW0e8-t1Dsnq4X04e2XwxnU3Gc-aElnuGacoFyqRELnkJ2mWjPJNQSFAoldRO2hS0FDZFh7JQuc2dspBalxVc8ZEYkpu-dxf86wHj3mz9IXSXRNN9ClImQvIuxfuUCz7GgKXZhaqx4c1wMEdvpvdmOm_m6M3ojkl6JnbZdo3hT_O_0A9qmnD0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680662361</pqid></control><display><type>article</type><title>A Mechanised Proof of Gödel’s Incompleteness Theorems Using Nominal Isabelle</title><source>SpringerLink Journals - AutoHoldings</source><creator>Paulson, Lawrence C.</creator><creatorcontrib>Paulson, Lawrence C.</creatorcontrib><description>An Isabelle/HOL formalisation of Gödel’s two incompleteness theorems is presented. The work follows Świerczkowski’s detailed proof of the theorems using hereditarily finite (HF) set theory (Dissertationes Mathematicae 422 , 1–58, 2003 ). Avoiding the usual arithmetical encodings of syntax eliminates the necessity to formalise elementary number theory within an embedded logical calculus. The Isabelle formalisation uses two separate treatments of variable binding: the nominal package (Logical Methods in Computer Science 8 (2:14), 1–35, 2012 ) is shown to scale to a development of this complexity, while de Bruijn indices (Indagationes Mathematicae 34 , 381–392, 1972 ) turn out to be ideal for coding syntax. Critical details of the Isabelle proof are described, in particular gaps and errors found in the literature.</description><identifier>ISSN: 0168-7433</identifier><identifier>EISSN: 1573-0670</identifier><identifier>DOI: 10.1007/s10817-015-9322-8</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Computer Science ; Mathematical Logic and Formal Languages ; Mathematical Logic and Foundations ; Symbolic and Algebraic Manipulation</subject><ispartof>Journal of automated reasoning, 2015-06, Vol.55 (1), p.1-37</ispartof><rights>Springer Science+Business Media Dordrecht 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-e5513e62fe161f08c94b960d607e6768c6a50863a5ece6d7babc7a05ac9d17143</citedby><cites>FETCH-LOGICAL-c386t-e5513e62fe161f08c94b960d607e6768c6a50863a5ece6d7babc7a05ac9d17143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10817-015-9322-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10817-015-9322-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Paulson, Lawrence C.</creatorcontrib><title>A Mechanised Proof of Gödel’s Incompleteness Theorems Using Nominal Isabelle</title><title>Journal of automated reasoning</title><addtitle>J Autom Reasoning</addtitle><description>An Isabelle/HOL formalisation of Gödel’s two incompleteness theorems is presented. The work follows Świerczkowski’s detailed proof of the theorems using hereditarily finite (HF) set theory (Dissertationes Mathematicae 422 , 1–58, 2003 ). Avoiding the usual arithmetical encodings of syntax eliminates the necessity to formalise elementary number theory within an embedded logical calculus. The Isabelle formalisation uses two separate treatments of variable binding: the nominal package (Logical Methods in Computer Science 8 (2:14), 1–35, 2012 ) is shown to scale to a development of this complexity, while de Bruijn indices (Indagationes Mathematicae 34 , 381–392, 1972 ) turn out to be ideal for coding syntax. Critical details of the Isabelle proof are described, in particular gaps and errors found in the literature.</description><subject>Artificial Intelligence</subject><subject>Computer Science</subject><subject>Mathematical Logic and Formal Languages</subject><subject>Mathematical Logic and Foundations</subject><subject>Symbolic and Algebraic Manipulation</subject><issn>0168-7433</issn><issn>1573-0670</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFOwzAQRS0EEqVwAHaWWBvGcWM7y6qCUqlQFu3acpxJmyqJi90u2HENLsIFuAknIVVYsEEaaTb_fc08Qq453HIAdRc5aK4Y8JRlIkmYPiEDnirBQCo4JQPgUjM1EuKcXMS4BQDBIRuQxZg-odvYtopY0JfgfUm7mX59Flh_v39EOmudb3Y17rHFGOlygz5gE-kqVu2aPvumam1NZ9HmWNd4Sc5KW0e8-t1Dsnq4X04e2XwxnU3Gc-aElnuGacoFyqRELnkJ2mWjPJNQSFAoldRO2hS0FDZFh7JQuc2dspBalxVc8ZEYkpu-dxf86wHj3mz9IXSXRNN9ClImQvIuxfuUCz7GgKXZhaqx4c1wMEdvpvdmOm_m6M3ojkl6JnbZdo3hT_O_0A9qmnD0</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Paulson, Lawrence C.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150601</creationdate><title>A Mechanised Proof of Gödel’s Incompleteness Theorems Using Nominal Isabelle</title><author>Paulson, Lawrence C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-e5513e62fe161f08c94b960d607e6768c6a50863a5ece6d7babc7a05ac9d17143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Artificial Intelligence</topic><topic>Computer Science</topic><topic>Mathematical Logic and Formal Languages</topic><topic>Mathematical Logic and Foundations</topic><topic>Symbolic and Algebraic Manipulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paulson, Lawrence C.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of automated reasoning</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paulson, Lawrence C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mechanised Proof of Gödel’s Incompleteness Theorems Using Nominal Isabelle</atitle><jtitle>Journal of automated reasoning</jtitle><stitle>J Autom Reasoning</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>55</volume><issue>1</issue><spage>1</spage><epage>37</epage><pages>1-37</pages><issn>0168-7433</issn><eissn>1573-0670</eissn><abstract>An Isabelle/HOL formalisation of Gödel’s two incompleteness theorems is presented. The work follows Świerczkowski’s detailed proof of the theorems using hereditarily finite (HF) set theory (Dissertationes Mathematicae 422 , 1–58, 2003 ). Avoiding the usual arithmetical encodings of syntax eliminates the necessity to formalise elementary number theory within an embedded logical calculus. The Isabelle formalisation uses two separate treatments of variable binding: the nominal package (Logical Methods in Computer Science 8 (2:14), 1–35, 2012 ) is shown to scale to a development of this complexity, while de Bruijn indices (Indagationes Mathematicae 34 , 381–392, 1972 ) turn out to be ideal for coding syntax. Critical details of the Isabelle proof are described, in particular gaps and errors found in the literature.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10817-015-9322-8</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-7433
ispartof Journal of automated reasoning, 2015-06, Vol.55 (1), p.1-37
issn 0168-7433
1573-0670
language eng
recordid cdi_proquest_journals_1680662361
source SpringerLink Journals - AutoHoldings
subjects Artificial Intelligence
Computer Science
Mathematical Logic and Formal Languages
Mathematical Logic and Foundations
Symbolic and Algebraic Manipulation
title A Mechanised Proof of Gödel’s Incompleteness Theorems Using Nominal Isabelle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T18%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mechanised%20Proof%20of%20G%C3%B6del%E2%80%99s%20Incompleteness%20Theorems%20Using%20Nominal%20Isabelle&rft.jtitle=Journal%20of%20automated%20reasoning&rft.au=Paulson,%20Lawrence%20C.&rft.date=2015-06-01&rft.volume=55&rft.issue=1&rft.spage=1&rft.epage=37&rft.pages=1-37&rft.issn=0168-7433&rft.eissn=1573-0670&rft_id=info:doi/10.1007/s10817-015-9322-8&rft_dat=%3Cproquest_cross%3E3683385421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680662361&rft_id=info:pmid/&rfr_iscdi=true