Smooth Simultaneous Confidence Corridor for the Mean of Sparse Functional Data

Functional data analysis (FDA) has become an important area of statistics research in the recent decade, yet a smooth simultaneous confidence corridor (SCC) does not exist in the literature for the mean function of sparse functional data. SCC is a powerful tool for making statistical inference on an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Statistical Association 2014-06, Vol.109 (506), p.661-673
Hauptverfasser: Zheng, Shuzhuan, Yang, Lijian, Härdle, Wolfgang K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 673
container_issue 506
container_start_page 661
container_title Journal of the American Statistical Association
container_volume 109
creator Zheng, Shuzhuan
Yang, Lijian
Härdle, Wolfgang K.
description Functional data analysis (FDA) has become an important area of statistics research in the recent decade, yet a smooth simultaneous confidence corridor (SCC) does not exist in the literature for the mean function of sparse functional data. SCC is a powerful tool for making statistical inference on an entire unknown function, nonetheless classic "Hungarian embedding" techniques for establishing asymptotic correctness of SCC completely fail for sparse functional data. We propose a local linear SCC and a shoal of confidence intervals (SCI) for the mean function of sparse functional data, and establish that it is asymptotically equivalent to the SCC of independent regression data, using new results from Gaussian process extreme value theory. The SCC procedure is examined in simulations for its superior theoretical accuracy and performance, and used to analyze growth curve data, confirming findings with quantified high significance levels. Supplementary materials for this article are available online.
doi_str_mv 10.1080/01621459.2013.866899
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1680207213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24247194</jstor_id><sourcerecordid>24247194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-b371cdb0a4c3f1f60aeef5e11ca175c39690602383d887d873344e7dc351daa93</originalsourceid><addsrcrecordid>eNqFkVtLxDAQhYsouK7-A8WCz7tmmjRJn0TWK3h5WAXfwpgmbpdusyYp4r83S1V8cyDMwJxzEr5k2SGQKRBJTgnwAlhZTQsCdCo5l1W1lY2gpGJSCPay_WfezfZCWJJUQspR9jBfORcX-bxZ9W3Ezrg-5DPX2aY2nTZp9L6pnc9tOnFh8nuDXe5sPl-jDya_6jsdG9dhm19gxP1sx2IbzMF3H2fPV5dPs5vJ3eP17ez8bqIZsDh5pQJ0_UqQaWrBcoLG2NIAaARRalrxinBSUElrKUUtBaWMGVFrWkKNWNFxdjLkrr17702Iaul6n14RFHBJCiIKoEnFBpX2LgRvrFr7ZoX-UwFRG3Lqh5zakFMDuWQ7GmzLEJ3_9RSsYAIqlvZnw77pEpUVfjjf1iriZ-u89djpJij6zw3HQ4JFp_DNJ8PzPAl4-hZZcpD0Cy_9hu4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1680207213</pqid></control><display><type>article</type><title>Smooth Simultaneous Confidence Corridor for the Mean of Sparse Functional Data</title><source>JSTOR Mathematics &amp; Statistics</source><source>Jstor Complete Legacy</source><source>Taylor &amp; Francis Journals Complete</source><creator>Zheng, Shuzhuan ; Yang, Lijian ; Härdle, Wolfgang K.</creator><creatorcontrib>Zheng, Shuzhuan ; Yang, Lijian ; Härdle, Wolfgang K.</creatorcontrib><description>Functional data analysis (FDA) has become an important area of statistics research in the recent decade, yet a smooth simultaneous confidence corridor (SCC) does not exist in the literature for the mean function of sparse functional data. SCC is a powerful tool for making statistical inference on an entire unknown function, nonetheless classic "Hungarian embedding" techniques for establishing asymptotic correctness of SCC completely fail for sparse functional data. We propose a local linear SCC and a shoal of confidence intervals (SCI) for the mean function of sparse functional data, and establish that it is asymptotically equivalent to the SCC of independent regression data, using new results from Gaussian process extreme value theory. The SCC procedure is examined in simulations for its superior theoretical accuracy and performance, and used to analyze growth curve data, confirming findings with quantified high significance levels. Supplementary materials for this article are available online.</description><identifier>ISSN: 1537-274X</identifier><identifier>ISSN: 0162-1459</identifier><identifier>EISSN: 1537-274X</identifier><identifier>DOI: 10.1080/01621459.2013.866899</identifier><identifier>CODEN: JSTNAL</identifier><language>eng</language><publisher>Alexandria: Taylor &amp; Francis</publisher><subject>Analytical estimating ; confidence interval ; Confidence intervals ; Data analysis ; Data lines ; Density estimation ; Double sum ; equations ; Estimation methods ; Estimation theory ; Estimators ; Extreme value ; Inference ; Karhunen-Loève L ; Linear regression ; Local linear estimator ; Regression analysis ; representation ; Simulation ; Statistical estimation ; Statistical inference ; Statistics ; Strong approximation ; Theory and Methods ; Time series models</subject><ispartof>Journal of the American Statistical Association, 2014-06, Vol.109 (506), p.661-673</ispartof><rights>2014 American Statistical Association 2014</rights><rights>Copyright © 2014 American Statistical Association</rights><rights>Copyright Taylor &amp; Francis Ltd. Jun 2014</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-b371cdb0a4c3f1f60aeef5e11ca175c39690602383d887d873344e7dc351daa93</citedby><cites>FETCH-LOGICAL-c414t-b371cdb0a4c3f1f60aeef5e11ca175c39690602383d887d873344e7dc351daa93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24247194$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24247194$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27903,27904,57995,57999,58228,58232,59623,60412</link.rule.ids></links><search><creatorcontrib>Zheng, Shuzhuan</creatorcontrib><creatorcontrib>Yang, Lijian</creatorcontrib><creatorcontrib>Härdle, Wolfgang K.</creatorcontrib><title>Smooth Simultaneous Confidence Corridor for the Mean of Sparse Functional Data</title><title>Journal of the American Statistical Association</title><description>Functional data analysis (FDA) has become an important area of statistics research in the recent decade, yet a smooth simultaneous confidence corridor (SCC) does not exist in the literature for the mean function of sparse functional data. SCC is a powerful tool for making statistical inference on an entire unknown function, nonetheless classic "Hungarian embedding" techniques for establishing asymptotic correctness of SCC completely fail for sparse functional data. We propose a local linear SCC and a shoal of confidence intervals (SCI) for the mean function of sparse functional data, and establish that it is asymptotically equivalent to the SCC of independent regression data, using new results from Gaussian process extreme value theory. The SCC procedure is examined in simulations for its superior theoretical accuracy and performance, and used to analyze growth curve data, confirming findings with quantified high significance levels. Supplementary materials for this article are available online.</description><subject>Analytical estimating</subject><subject>confidence interval</subject><subject>Confidence intervals</subject><subject>Data analysis</subject><subject>Data lines</subject><subject>Density estimation</subject><subject>Double sum</subject><subject>equations</subject><subject>Estimation methods</subject><subject>Estimation theory</subject><subject>Estimators</subject><subject>Extreme value</subject><subject>Inference</subject><subject>Karhunen-Loève L</subject><subject>Linear regression</subject><subject>Local linear estimator</subject><subject>Regression analysis</subject><subject>representation</subject><subject>Simulation</subject><subject>Statistical estimation</subject><subject>Statistical inference</subject><subject>Statistics</subject><subject>Strong approximation</subject><subject>Theory and Methods</subject><subject>Time series models</subject><issn>1537-274X</issn><issn>0162-1459</issn><issn>1537-274X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkVtLxDAQhYsouK7-A8WCz7tmmjRJn0TWK3h5WAXfwpgmbpdusyYp4r83S1V8cyDMwJxzEr5k2SGQKRBJTgnwAlhZTQsCdCo5l1W1lY2gpGJSCPay_WfezfZCWJJUQspR9jBfORcX-bxZ9W3Ezrg-5DPX2aY2nTZp9L6pnc9tOnFh8nuDXe5sPl-jDya_6jsdG9dhm19gxP1sx2IbzMF3H2fPV5dPs5vJ3eP17ez8bqIZsDh5pQJ0_UqQaWrBcoLG2NIAaARRalrxinBSUElrKUUtBaWMGVFrWkKNWNFxdjLkrr17702Iaul6n14RFHBJCiIKoEnFBpX2LgRvrFr7ZoX-UwFRG3Lqh5zakFMDuWQ7GmzLEJ3_9RSsYAIqlvZnw77pEpUVfjjf1iriZ-u89djpJij6zw3HQ4JFp_DNJ8PzPAl4-hZZcpD0Cy_9hu4</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Zheng, Shuzhuan</creator><creator>Yang, Lijian</creator><creator>Härdle, Wolfgang K.</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Group, LLC</general><general>Taylor &amp; Francis Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope><scope>K9.</scope></search><sort><creationdate>20140601</creationdate><title>Smooth Simultaneous Confidence Corridor for the Mean of Sparse Functional Data</title><author>Zheng, Shuzhuan ; Yang, Lijian ; Härdle, Wolfgang K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-b371cdb0a4c3f1f60aeef5e11ca175c39690602383d887d873344e7dc351daa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analytical estimating</topic><topic>confidence interval</topic><topic>Confidence intervals</topic><topic>Data analysis</topic><topic>Data lines</topic><topic>Density estimation</topic><topic>Double sum</topic><topic>equations</topic><topic>Estimation methods</topic><topic>Estimation theory</topic><topic>Estimators</topic><topic>Extreme value</topic><topic>Inference</topic><topic>Karhunen-Loève L</topic><topic>Linear regression</topic><topic>Local linear estimator</topic><topic>Regression analysis</topic><topic>representation</topic><topic>Simulation</topic><topic>Statistical estimation</topic><topic>Statistical inference</topic><topic>Statistics</topic><topic>Strong approximation</topic><topic>Theory and Methods</topic><topic>Time series models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Shuzhuan</creatorcontrib><creatorcontrib>Yang, Lijian</creatorcontrib><creatorcontrib>Härdle, Wolfgang K.</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of the American Statistical Association</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Shuzhuan</au><au>Yang, Lijian</au><au>Härdle, Wolfgang K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smooth Simultaneous Confidence Corridor for the Mean of Sparse Functional Data</atitle><jtitle>Journal of the American Statistical Association</jtitle><date>2014-06-01</date><risdate>2014</risdate><volume>109</volume><issue>506</issue><spage>661</spage><epage>673</epage><pages>661-673</pages><issn>1537-274X</issn><issn>0162-1459</issn><eissn>1537-274X</eissn><coden>JSTNAL</coden><abstract>Functional data analysis (FDA) has become an important area of statistics research in the recent decade, yet a smooth simultaneous confidence corridor (SCC) does not exist in the literature for the mean function of sparse functional data. SCC is a powerful tool for making statistical inference on an entire unknown function, nonetheless classic "Hungarian embedding" techniques for establishing asymptotic correctness of SCC completely fail for sparse functional data. We propose a local linear SCC and a shoal of confidence intervals (SCI) for the mean function of sparse functional data, and establish that it is asymptotically equivalent to the SCC of independent regression data, using new results from Gaussian process extreme value theory. The SCC procedure is examined in simulations for its superior theoretical accuracy and performance, and used to analyze growth curve data, confirming findings with quantified high significance levels. Supplementary materials for this article are available online.</abstract><cop>Alexandria</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/01621459.2013.866899</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1537-274X
ispartof Journal of the American Statistical Association, 2014-06, Vol.109 (506), p.661-673
issn 1537-274X
0162-1459
1537-274X
language eng
recordid cdi_proquest_journals_1680207213
source JSTOR Mathematics & Statistics; Jstor Complete Legacy; Taylor & Francis Journals Complete
subjects Analytical estimating
confidence interval
Confidence intervals
Data analysis
Data lines
Density estimation
Double sum
equations
Estimation methods
Estimation theory
Estimators
Extreme value
Inference
Karhunen-Loève L
Linear regression
Local linear estimator
Regression analysis
representation
Simulation
Statistical estimation
Statistical inference
Statistics
Strong approximation
Theory and Methods
Time series models
title Smooth Simultaneous Confidence Corridor for the Mean of Sparse Functional Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T16%3A05%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smooth%20Simultaneous%20Confidence%20Corridor%20for%20the%20Mean%20of%20Sparse%20Functional%20Data&rft.jtitle=Journal%20of%20the%20American%20Statistical%20Association&rft.au=Zheng,%20Shuzhuan&rft.date=2014-06-01&rft.volume=109&rft.issue=506&rft.spage=661&rft.epage=673&rft.pages=661-673&rft.issn=1537-274X&rft.eissn=1537-274X&rft.coden=JSTNAL&rft_id=info:doi/10.1080/01621459.2013.866899&rft_dat=%3Cjstor_proqu%3E24247194%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1680207213&rft_id=info:pmid/&rft_jstor_id=24247194&rfr_iscdi=true