Straight to the Source: Detecting Aggregate Objects in Astronomical Images With Proper Error Control
The next generation of telescopes, coming online in the next decade, will acquire terabytes of image data each night. Collectively, these large images will contain billions of interesting objects, which astronomers call sources. One critical task for astronomers is to construct from the image data a...
Gespeichert in:
Veröffentlicht in: | Journal of the American Statistical Association 2013-06, Vol.108 (502), p.456-468 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The next generation of telescopes, coming online in the next decade, will acquire terabytes of image data each night. Collectively, these large images will contain billions of interesting objects, which astronomers call sources. One critical task for astronomers is to construct from the image data a detailed source catalog that gives the sky coordinates and other properties of all detected sources. The source catalog is the primary data product produced by most telescopes and serves as an important input for studies that build and test new astrophysical theories. To construct an accurate catalog, the sources must first be detected in the image. A variety of effective source detection algorithms exist in the astronomical literature, but few, if any, provide rigorous statistical control of error rates. A variety of multiple testing procedures exist in the statistical literature that can provide rigorous error control over pixelwise errors, but these do not provide control over errors at the level of sources, which is what astronomers need. In this article, we propose a technique that is effective at source detection while providing rigorous control on sourcewise error rates. We demonstrate our approach with data from the Chandra X-ray Observatory Satellite. Our method is competitive with existing astronomical methods, even finding two new sources that were missed by previous studies, while providing stronger performance guarantees and without requiring costly follow up studies that are commonly required with current techniques. |
---|---|
ISSN: | 1537-274X 0162-1459 1537-274X |
DOI: | 10.1080/01621459.2013.779829 |