Bifurcation Analysis for Nonlinear Recurrence Relations with Threshold Control and 2 k -Periodic Coefficients

A nonlinear recurrence involving a piecewise constant McCulloch-Pittsfunction and 2 k -periodic coefficient sequences is investigated. Byallowing the threshold parameter to vary from 0 to ∞ , we work outa complete bifurcation analysis for the asymptotic behaviors of thecorresponding solutions. Among...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete dynamics in nature and society 2015, Vol.2015 (2015), p.1-13
Hauptverfasser: Dou, Liping, Cheng, Sui Sun, Hou, Chengmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 2015
container_start_page 1
container_title Discrete dynamics in nature and society
container_volume 2015
creator Dou, Liping
Cheng, Sui Sun
Hou, Chengmin
description A nonlinear recurrence involving a piecewise constant McCulloch-Pittsfunction and 2 k -periodic coefficient sequences is investigated. Byallowing the threshold parameter to vary from 0 to ∞ , we work outa complete bifurcation analysis for the asymptotic behaviors of thecorresponding solutions. Among other things, we show that each solutiontends towards one of four different limits. Furthermore, the accompanying initialregions for each type of solutions can be determined. It is hoped that ouranalysis will provide motivation for further results for recurrentMcCulloch-Pitts type neural networks.
doi_str_mv 10.1155/2015/610345
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1677804827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3673058671</sourcerecordid><originalsourceid>FETCH-LOGICAL-c234t-989af7b5b79046d81c537f0e2b2b19c259ea89794569bcd436c2b700ec8576773</originalsourceid><addsrcrecordid>eNqF0M1LwzAYBvAgCs7pybsEvCl1Sdp8HefwC4aKTPBW0jRhmV0yk5ax_97OevDm6X3g_fHC-wBwjtENxpROCMJ0wjDKC3oARpghngnBPw77jAjLECHsGJyktEKIICHJCKxvne2iVq0LHk69anbJJWhDhM_BN84bFeGb0V2MxmvTx-aHJrh17RIultGkZWhqOAu-jaGByteQwE-YvZroQu10vzHWOu2Mb9MpOLKqSebsd47B-_3dYvaYzV8enmbTeaZJXrSZFFJZXtGKS1SwWmBNc26RIRWpsNSESqOE5LKgTFa6LnKmScURMlpQzjjPx-ByuLuJ4aszqS1XoYv9d6nE_V6gQpC9uh6UjiGlaGy5iW6t4q7EqNz3We77LIc-e3016KXztdq6f_DFgE1PjFV_MENMivwb7Zd-Pw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1677804827</pqid></control><display><type>article</type><title>Bifurcation Analysis for Nonlinear Recurrence Relations with Threshold Control and 2 k -Periodic Coefficients</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Dou, Liping ; Cheng, Sui Sun ; Hou, Chengmin</creator><contributor>Papashinopoulos, Garyfalos</contributor><creatorcontrib>Dou, Liping ; Cheng, Sui Sun ; Hou, Chengmin ; Papashinopoulos, Garyfalos</creatorcontrib><description>A nonlinear recurrence involving a piecewise constant McCulloch-Pittsfunction and 2 k -periodic coefficient sequences is investigated. Byallowing the threshold parameter to vary from 0 to ∞ , we work outa complete bifurcation analysis for the asymptotic behaviors of thecorresponding solutions. Among other things, we show that each solutiontends towards one of four different limits. Furthermore, the accompanying initialregions for each type of solutions can be determined. It is hoped that ouranalysis will provide motivation for further results for recurrentMcCulloch-Pitts type neural networks.</description><identifier>ISSN: 1026-0226</identifier><identifier>EISSN: 1607-887X</identifier><identifier>DOI: 10.1155/2015/610345</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Behavior ; Neural networks</subject><ispartof>Discrete dynamics in nature and society, 2015, Vol.2015 (2015), p.1-13</ispartof><rights>Copyright © 2015 Liping Dou et al.</rights><rights>Copyright © 2015 Liping Dou et al. Liping Dou et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c234t-989af7b5b79046d81c537f0e2b2b19c259ea89794569bcd436c2b700ec8576773</citedby><cites>FETCH-LOGICAL-c234t-989af7b5b79046d81c537f0e2b2b19c259ea89794569bcd436c2b700ec8576773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,873,4009,27902,27903,27904</link.rule.ids></links><search><contributor>Papashinopoulos, Garyfalos</contributor><creatorcontrib>Dou, Liping</creatorcontrib><creatorcontrib>Cheng, Sui Sun</creatorcontrib><creatorcontrib>Hou, Chengmin</creatorcontrib><title>Bifurcation Analysis for Nonlinear Recurrence Relations with Threshold Control and 2 k -Periodic Coefficients</title><title>Discrete dynamics in nature and society</title><description>A nonlinear recurrence involving a piecewise constant McCulloch-Pittsfunction and 2 k -periodic coefficient sequences is investigated. Byallowing the threshold parameter to vary from 0 to ∞ , we work outa complete bifurcation analysis for the asymptotic behaviors of thecorresponding solutions. Among other things, we show that each solutiontends towards one of four different limits. Furthermore, the accompanying initialregions for each type of solutions can be determined. It is hoped that ouranalysis will provide motivation for further results for recurrentMcCulloch-Pitts type neural networks.</description><subject>Behavior</subject><subject>Neural networks</subject><issn>1026-0226</issn><issn>1607-887X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNqF0M1LwzAYBvAgCs7pybsEvCl1Sdp8HefwC4aKTPBW0jRhmV0yk5ax_97OevDm6X3g_fHC-wBwjtENxpROCMJ0wjDKC3oARpghngnBPw77jAjLECHsGJyktEKIICHJCKxvne2iVq0LHk69anbJJWhDhM_BN84bFeGb0V2MxmvTx-aHJrh17RIultGkZWhqOAu-jaGByteQwE-YvZroQu10vzHWOu2Mb9MpOLKqSebsd47B-_3dYvaYzV8enmbTeaZJXrSZFFJZXtGKS1SwWmBNc26RIRWpsNSESqOE5LKgTFa6LnKmScURMlpQzjjPx-ByuLuJ4aszqS1XoYv9d6nE_V6gQpC9uh6UjiGlaGy5iW6t4q7EqNz3We77LIc-e3016KXztdq6f_DFgE1PjFV_MENMivwb7Zd-Pw</recordid><startdate>2015</startdate><enddate>2015</enddate><creator>Dou, Liping</creator><creator>Cheng, Sui Sun</creator><creator>Hou, Chengmin</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>2015</creationdate><title>Bifurcation Analysis for Nonlinear Recurrence Relations with Threshold Control and 2 k -Periodic Coefficients</title><author>Dou, Liping ; Cheng, Sui Sun ; Hou, Chengmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c234t-989af7b5b79046d81c537f0e2b2b19c259ea89794569bcd436c2b700ec8576773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Behavior</topic><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dou, Liping</creatorcontrib><creatorcontrib>Cheng, Sui Sun</creatorcontrib><creatorcontrib>Hou, Chengmin</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Discrete dynamics in nature and society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dou, Liping</au><au>Cheng, Sui Sun</au><au>Hou, Chengmin</au><au>Papashinopoulos, Garyfalos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bifurcation Analysis for Nonlinear Recurrence Relations with Threshold Control and 2 k -Periodic Coefficients</atitle><jtitle>Discrete dynamics in nature and society</jtitle><date>2015</date><risdate>2015</risdate><volume>2015</volume><issue>2015</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>1026-0226</issn><eissn>1607-887X</eissn><abstract>A nonlinear recurrence involving a piecewise constant McCulloch-Pittsfunction and 2 k -periodic coefficient sequences is investigated. Byallowing the threshold parameter to vary from 0 to ∞ , we work outa complete bifurcation analysis for the asymptotic behaviors of thecorresponding solutions. Among other things, we show that each solutiontends towards one of four different limits. Furthermore, the accompanying initialregions for each type of solutions can be determined. It is hoped that ouranalysis will provide motivation for further results for recurrentMcCulloch-Pitts type neural networks.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2015/610345</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1026-0226
ispartof Discrete dynamics in nature and society, 2015, Vol.2015 (2015), p.1-13
issn 1026-0226
1607-887X
language eng
recordid cdi_proquest_journals_1677804827
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Behavior
Neural networks
title Bifurcation Analysis for Nonlinear Recurrence Relations with Threshold Control and 2 k -Periodic Coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T02%3A50%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bifurcation%20Analysis%20for%20Nonlinear%20Recurrence%20Relations%20with%20Threshold%20Control%20and%202%20k%20-Periodic%20Coefficients&rft.jtitle=Discrete%20dynamics%20in%20nature%20and%20society&rft.au=Dou,%20Liping&rft.date=2015&rft.volume=2015&rft.issue=2015&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=1026-0226&rft.eissn=1607-887X&rft_id=info:doi/10.1155/2015/610345&rft_dat=%3Cproquest_cross%3E3673058671%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1677804827&rft_id=info:pmid/&rfr_iscdi=true