Effect of Sn Doping on the Thermoelectric Properties of n-type Bi^sub 2^(Te,Se)^sub 3^ Alloys

Issue Title: 2014 International Conference on Thermoelectrics. Guest Editors: Lasse Rosendahl, Donald Morelli, Jihui Yang, Hiroaki Anno, Matt Beekman, Jan D. Koenig, Xinfeng Tang, James R. Salvador, Bertrand Lenoir, Chunlei Wan, Jeff Sharp, Emmanuel Guilmeau, Hsin Wang, Jing-feng Li, Tie-Jun Zhu, Da...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2015-06, Vol.44 (6), p.1926
Hauptverfasser: Lee, Jae-uk, Lee, Deuk-hee, Kwon, Beomjin, Hyun, Dow-bin, Nahm, Sahn, Baek, Seung-hyub, Kim, Jin-sang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 1926
container_title Journal of electronic materials
container_volume 44
creator Lee, Jae-uk
Lee, Deuk-hee
Kwon, Beomjin
Hyun, Dow-bin
Nahm, Sahn
Baek, Seung-hyub
Kim, Jin-sang
description Issue Title: 2014 International Conference on Thermoelectrics. Guest Editors: Lasse Rosendahl, Donald Morelli, Jihui Yang, Hiroaki Anno, Matt Beekman, Jan D. Koenig, Xinfeng Tang, James R. Salvador, Bertrand Lenoir, Chunlei Wan, Jeff Sharp, Emmanuel Guilmeau, Hsin Wang, Jing-feng Li, Tie-Jun Zhu, David Singh, Ryoji Funahashi, Yuri Grin, and Wenqing Zhang In the present work, 0.01-0.05wt.% Sn-doped Bi^sub 2^(Te^sub 0.9^Se^sub 0.1^)^sub 3^ alloys were prepared by mechanical deformation followed by hot pressing, and their thermoelectric properties were studied. We observed that the Sn element is a very effective dopant as an acceptor to control the carrier concentration in the n-type Bi^sub 2^(Te^sub 0.9^Se^sub 0.1^)^sub 3^ alloys to optimize their thermoelectric property. The n-type carrier concentration can be controlled from 4.2 × 10^sup 19^/cm^sup 3^ to 2.4 × 10^sup 19^/cm^sup 3^ by 0.05wt.% Sn-doping. While the Seebeck coefficient and the electrical resistivity are both increased with doping, the power factor remains the same. Therefore, we found that the thermoelectric figure-of-merit becomes maximized at 0.75 when the thermal conductivity has a minimum value for the 0.03wt.% Sn-doped sample.
doi_str_mv 10.1007/s11664-014-3598-z
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1676460479</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3668977471</sourcerecordid><originalsourceid>FETCH-proquest_journals_16764604793</originalsourceid><addsrcrecordid>eNqNistOwkAUQCcGEgv4Aexu4kYSB-Yyj5alIMSlCV2woUTIrZSUmTozXeDXg8YPcHVycg5jQxRjFCKdBERjFBeouNSzjH_fsQS1khwzs-mwREiDXE-lvme9EE5CoMYME7ZdliUdIrgS1hZeXVPZT3AW4pEgP5I_O6pv3VcHePeuIR8rCj-35fHSEMyrIrR7mBZPOT2vafRrsoCXunaXMGDd8qMO9PDHPntcLfPFG2-8-2opxN3Jtd7e0g5NapQRKp3J_11XWhxIvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676460479</pqid></control><display><type>article</type><title>Effect of Sn Doping on the Thermoelectric Properties of n-type Bi^sub 2^(Te,Se)^sub 3^ Alloys</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Jae-uk ; Lee, Deuk-hee ; Kwon, Beomjin ; Hyun, Dow-bin ; Nahm, Sahn ; Baek, Seung-hyub ; Kim, Jin-sang</creator><creatorcontrib>Lee, Jae-uk ; Lee, Deuk-hee ; Kwon, Beomjin ; Hyun, Dow-bin ; Nahm, Sahn ; Baek, Seung-hyub ; Kim, Jin-sang</creatorcontrib><description>Issue Title: 2014 International Conference on Thermoelectrics. Guest Editors: Lasse Rosendahl, Donald Morelli, Jihui Yang, Hiroaki Anno, Matt Beekman, Jan D. Koenig, Xinfeng Tang, James R. Salvador, Bertrand Lenoir, Chunlei Wan, Jeff Sharp, Emmanuel Guilmeau, Hsin Wang, Jing-feng Li, Tie-Jun Zhu, David Singh, Ryoji Funahashi, Yuri Grin, and Wenqing Zhang In the present work, 0.01-0.05wt.% Sn-doped Bi^sub 2^(Te^sub 0.9^Se^sub 0.1^)^sub 3^ alloys were prepared by mechanical deformation followed by hot pressing, and their thermoelectric properties were studied. We observed that the Sn element is a very effective dopant as an acceptor to control the carrier concentration in the n-type Bi^sub 2^(Te^sub 0.9^Se^sub 0.1^)^sub 3^ alloys to optimize their thermoelectric property. The n-type carrier concentration can be controlled from 4.2 × 10^sup 19^/cm^sup 3^ to 2.4 × 10^sup 19^/cm^sup 3^ by 0.05wt.% Sn-doping. While the Seebeck coefficient and the electrical resistivity are both increased with doping, the power factor remains the same. Therefore, we found that the thermoelectric figure-of-merit becomes maximized at 0.75 when the thermal conductivity has a minimum value for the 0.03wt.% Sn-doped sample.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-014-3598-z</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Warrendale: Springer Nature B.V</publisher><subject>Alloys ; Electric properties ; Heat conductivity ; Materials science ; Silicon</subject><ispartof>Journal of electronic materials, 2015-06, Vol.44 (6), p.1926</ispartof><rights>The Minerals, Metals &amp; Materials Society 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Lee, Jae-uk</creatorcontrib><creatorcontrib>Lee, Deuk-hee</creatorcontrib><creatorcontrib>Kwon, Beomjin</creatorcontrib><creatorcontrib>Hyun, Dow-bin</creatorcontrib><creatorcontrib>Nahm, Sahn</creatorcontrib><creatorcontrib>Baek, Seung-hyub</creatorcontrib><creatorcontrib>Kim, Jin-sang</creatorcontrib><title>Effect of Sn Doping on the Thermoelectric Properties of n-type Bi^sub 2^(Te,Se)^sub 3^ Alloys</title><title>Journal of electronic materials</title><description>Issue Title: 2014 International Conference on Thermoelectrics. Guest Editors: Lasse Rosendahl, Donald Morelli, Jihui Yang, Hiroaki Anno, Matt Beekman, Jan D. Koenig, Xinfeng Tang, James R. Salvador, Bertrand Lenoir, Chunlei Wan, Jeff Sharp, Emmanuel Guilmeau, Hsin Wang, Jing-feng Li, Tie-Jun Zhu, David Singh, Ryoji Funahashi, Yuri Grin, and Wenqing Zhang In the present work, 0.01-0.05wt.% Sn-doped Bi^sub 2^(Te^sub 0.9^Se^sub 0.1^)^sub 3^ alloys were prepared by mechanical deformation followed by hot pressing, and their thermoelectric properties were studied. We observed that the Sn element is a very effective dopant as an acceptor to control the carrier concentration in the n-type Bi^sub 2^(Te^sub 0.9^Se^sub 0.1^)^sub 3^ alloys to optimize their thermoelectric property. The n-type carrier concentration can be controlled from 4.2 × 10^sup 19^/cm^sup 3^ to 2.4 × 10^sup 19^/cm^sup 3^ by 0.05wt.% Sn-doping. While the Seebeck coefficient and the electrical resistivity are both increased with doping, the power factor remains the same. Therefore, we found that the thermoelectric figure-of-merit becomes maximized at 0.75 when the thermal conductivity has a minimum value for the 0.03wt.% Sn-doped sample.</description><subject>Alloys</subject><subject>Electric properties</subject><subject>Heat conductivity</subject><subject>Materials science</subject><subject>Silicon</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNistOwkAUQCcGEgv4Aexu4kYSB-Yyj5alIMSlCV2woUTIrZSUmTozXeDXg8YPcHVycg5jQxRjFCKdBERjFBeouNSzjH_fsQS1khwzs-mwREiDXE-lvme9EE5CoMYME7ZdliUdIrgS1hZeXVPZT3AW4pEgP5I_O6pv3VcHePeuIR8rCj-35fHSEMyrIrR7mBZPOT2vafRrsoCXunaXMGDd8qMO9PDHPntcLfPFG2-8-2opxN3Jtd7e0g5NapQRKp3J_11XWhxIvw</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Lee, Jae-uk</creator><creator>Lee, Deuk-hee</creator><creator>Kwon, Beomjin</creator><creator>Hyun, Dow-bin</creator><creator>Nahm, Sahn</creator><creator>Baek, Seung-hyub</creator><creator>Kim, Jin-sang</creator><general>Springer Nature B.V</general><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20150601</creationdate><title>Effect of Sn Doping on the Thermoelectric Properties of n-type Bi^sub 2^(Te,Se)^sub 3^ Alloys</title><author>Lee, Jae-uk ; Lee, Deuk-hee ; Kwon, Beomjin ; Hyun, Dow-bin ; Nahm, Sahn ; Baek, Seung-hyub ; Kim, Jin-sang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_16764604793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alloys</topic><topic>Electric properties</topic><topic>Heat conductivity</topic><topic>Materials science</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jae-uk</creatorcontrib><creatorcontrib>Lee, Deuk-hee</creatorcontrib><creatorcontrib>Kwon, Beomjin</creatorcontrib><creatorcontrib>Hyun, Dow-bin</creatorcontrib><creatorcontrib>Nahm, Sahn</creatorcontrib><creatorcontrib>Baek, Seung-hyub</creatorcontrib><creatorcontrib>Kim, Jin-sang</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jae-uk</au><au>Lee, Deuk-hee</au><au>Kwon, Beomjin</au><au>Hyun, Dow-bin</au><au>Nahm, Sahn</au><au>Baek, Seung-hyub</au><au>Kim, Jin-sang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Sn Doping on the Thermoelectric Properties of n-type Bi^sub 2^(Te,Se)^sub 3^ Alloys</atitle><jtitle>Journal of electronic materials</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>44</volume><issue>6</issue><spage>1926</spage><pages>1926-</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>Issue Title: 2014 International Conference on Thermoelectrics. Guest Editors: Lasse Rosendahl, Donald Morelli, Jihui Yang, Hiroaki Anno, Matt Beekman, Jan D. Koenig, Xinfeng Tang, James R. Salvador, Bertrand Lenoir, Chunlei Wan, Jeff Sharp, Emmanuel Guilmeau, Hsin Wang, Jing-feng Li, Tie-Jun Zhu, David Singh, Ryoji Funahashi, Yuri Grin, and Wenqing Zhang In the present work, 0.01-0.05wt.% Sn-doped Bi^sub 2^(Te^sub 0.9^Se^sub 0.1^)^sub 3^ alloys were prepared by mechanical deformation followed by hot pressing, and their thermoelectric properties were studied. We observed that the Sn element is a very effective dopant as an acceptor to control the carrier concentration in the n-type Bi^sub 2^(Te^sub 0.9^Se^sub 0.1^)^sub 3^ alloys to optimize their thermoelectric property. The n-type carrier concentration can be controlled from 4.2 × 10^sup 19^/cm^sup 3^ to 2.4 × 10^sup 19^/cm^sup 3^ by 0.05wt.% Sn-doping. While the Seebeck coefficient and the electrical resistivity are both increased with doping, the power factor remains the same. Therefore, we found that the thermoelectric figure-of-merit becomes maximized at 0.75 when the thermal conductivity has a minimum value for the 0.03wt.% Sn-doped sample.</abstract><cop>Warrendale</cop><pub>Springer Nature B.V</pub><doi>10.1007/s11664-014-3598-z</doi></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2015-06, Vol.44 (6), p.1926
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_1676460479
source SpringerLink Journals - AutoHoldings
subjects Alloys
Electric properties
Heat conductivity
Materials science
Silicon
title Effect of Sn Doping on the Thermoelectric Properties of n-type Bi^sub 2^(Te,Se)^sub 3^ Alloys
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A33%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Sn%20Doping%20on%20the%20Thermoelectric%20Properties%20of%20n-type%20Bi%5Esub%202%5E(Te,Se)%5Esub%203%5E%20Alloys&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Lee,%20Jae-uk&rft.date=2015-06-01&rft.volume=44&rft.issue=6&rft.spage=1926&rft.pages=1926-&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-014-3598-z&rft_dat=%3Cproquest%3E3668977471%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676460479&rft_id=info:pmid/&rfr_iscdi=true