Functionally Graded Thermoelectric Materials with Arbitrary Property Gradations: A One-Dimensional Semianalytical Study

This paper presents a semianalytical model to obtain the temperature distribution and energy conversion efficiency for functionally graded thermoelectric materials (FGTEMs) with arbitrary property gradients along the direction of the thermoelectric (TE) device leg. A multilayered material model is e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2015-06, Vol.44 (6), p.1444-1449
Hauptverfasser: Jin, Z.-H., Wallace, T. T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1449
container_issue 6
container_start_page 1444
container_title Journal of electronic materials
container_volume 44
creator Jin, Z.-H.
Wallace, T. T.
description This paper presents a semianalytical model to obtain the temperature distribution and energy conversion efficiency for functionally graded thermoelectric materials (FGTEMs) with arbitrary property gradients along the direction of the thermoelectric (TE) device leg. A multilayered material model is employed in which the FGTEM is divided into many layers throughout the length of the TE element where each layer is treated as a homogeneous material with constant Seebeck coefficient, electrical resistivity, and thermal conductivity. An approximate, closed-form temperature solution is obtained by solving the heat conduction equation in each homogeneous layer with the conditions of temperature and heat flux continuity across the interfaces between the homogeneous layers. The energy conversion efficiency is subsequently obtained using the approximate temperature solution. Numerical simulations are focused on the effects of the property gradation profile on the efficiency of FGTEMs with sigmoid property gradients. It is found that the peak efficiency may be increased significantly by using appropriately designed property gradients. The present model provides a convenient analytical tool for optimal design of FGTEMs with improved efficiency.
doi_str_mv 10.1007/s11664-014-3408-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1676460289</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3668976771</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-3b011347f0bba91f67704e106240cb4e4fcc7693eebafa04d8c7e040015422743</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWD_-AG8Bz9GZTZpsvRU_qqAoWMFbyKazGml3a5Ii_e_ddT148TQz8N6PeY-xE4QzBDDnCVFrJQCVkApKYXbYCMdKCiz16y4bgdQoxoUc77ODlD4AcIwljtjXzabxObSNWy63fBbdghZ8_k5x1dKSfI7B8weXKQa3TPwr5Hc-jVXI0cUtf4rtmmIefK6npAs-5Y8Niauwoib9cPkzrYLrlm0Ovj_zZrE9Ynt1R6Tj33nIXm6u55e34v5xdnc5vRdeqkkWsgJEqUwNVeUmWGtjQBGCLhT4SpGqvTd6IokqVztQi9IbAtXHU0VhlDxkpwN3HdvPDaVsP9pN7J5JFrXRSkNRTjoVDiof25Qi1XYdw6qLaBFs368d-rVdv7bv15rOUwye1GmbN4p_yP-avgH44n8C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676460289</pqid></control><display><type>article</type><title>Functionally Graded Thermoelectric Materials with Arbitrary Property Gradations: A One-Dimensional Semianalytical Study</title><source>Springer Nature - Complete Springer Journals</source><creator>Jin, Z.-H. ; Wallace, T. T.</creator><creatorcontrib>Jin, Z.-H. ; Wallace, T. T.</creatorcontrib><description>This paper presents a semianalytical model to obtain the temperature distribution and energy conversion efficiency for functionally graded thermoelectric materials (FGTEMs) with arbitrary property gradients along the direction of the thermoelectric (TE) device leg. A multilayered material model is employed in which the FGTEM is divided into many layers throughout the length of the TE element where each layer is treated as a homogeneous material with constant Seebeck coefficient, electrical resistivity, and thermal conductivity. An approximate, closed-form temperature solution is obtained by solving the heat conduction equation in each homogeneous layer with the conditions of temperature and heat flux continuity across the interfaces between the homogeneous layers. The energy conversion efficiency is subsequently obtained using the approximate temperature solution. Numerical simulations are focused on the effects of the property gradation profile on the efficiency of FGTEMs with sigmoid property gradients. It is found that the peak efficiency may be increased significantly by using appropriately designed property gradients. The present model provides a convenient analytical tool for optimal design of FGTEMs with improved efficiency.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-014-3408-7</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electric properties ; Electronics and Microelectronics ; Heat conductivity ; Instrumentation ; Materials Science ; Optical and Electronic Materials ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2015-06, Vol.44 (6), p.1444-1449</ispartof><rights>The Minerals, Metals &amp; Materials Society 2014</rights><rights>The Minerals, Metals &amp; Materials Society 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-3b011347f0bba91f67704e106240cb4e4fcc7693eebafa04d8c7e040015422743</citedby><cites>FETCH-LOGICAL-c349t-3b011347f0bba91f67704e106240cb4e4fcc7693eebafa04d8c7e040015422743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-014-3408-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-014-3408-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Jin, Z.-H.</creatorcontrib><creatorcontrib>Wallace, T. T.</creatorcontrib><title>Functionally Graded Thermoelectric Materials with Arbitrary Property Gradations: A One-Dimensional Semianalytical Study</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>This paper presents a semianalytical model to obtain the temperature distribution and energy conversion efficiency for functionally graded thermoelectric materials (FGTEMs) with arbitrary property gradients along the direction of the thermoelectric (TE) device leg. A multilayered material model is employed in which the FGTEM is divided into many layers throughout the length of the TE element where each layer is treated as a homogeneous material with constant Seebeck coefficient, electrical resistivity, and thermal conductivity. An approximate, closed-form temperature solution is obtained by solving the heat conduction equation in each homogeneous layer with the conditions of temperature and heat flux continuity across the interfaces between the homogeneous layers. The energy conversion efficiency is subsequently obtained using the approximate temperature solution. Numerical simulations are focused on the effects of the property gradation profile on the efficiency of FGTEMs with sigmoid property gradients. It is found that the peak efficiency may be increased significantly by using appropriately designed property gradients. The present model provides a convenient analytical tool for optimal design of FGTEMs with improved efficiency.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electric properties</subject><subject>Electronics and Microelectronics</subject><subject>Heat conductivity</subject><subject>Instrumentation</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM1LAzEQxYMoWD_-AG8Bz9GZTZpsvRU_qqAoWMFbyKazGml3a5Ii_e_ddT148TQz8N6PeY-xE4QzBDDnCVFrJQCVkApKYXbYCMdKCiz16y4bgdQoxoUc77ODlD4AcIwljtjXzabxObSNWy63fBbdghZ8_k5x1dKSfI7B8weXKQa3TPwr5Hc-jVXI0cUtf4rtmmIefK6npAs-5Y8Niauwoib9cPkzrYLrlm0Ovj_zZrE9Ynt1R6Tj33nIXm6u55e34v5xdnc5vRdeqkkWsgJEqUwNVeUmWGtjQBGCLhT4SpGqvTd6IokqVztQi9IbAtXHU0VhlDxkpwN3HdvPDaVsP9pN7J5JFrXRSkNRTjoVDiof25Qi1XYdw6qLaBFs368d-rVdv7bv15rOUwye1GmbN4p_yP-avgH44n8C</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Jin, Z.-H.</creator><creator>Wallace, T. T.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20150601</creationdate><title>Functionally Graded Thermoelectric Materials with Arbitrary Property Gradations: A One-Dimensional Semianalytical Study</title><author>Jin, Z.-H. ; Wallace, T. T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-3b011347f0bba91f67704e106240cb4e4fcc7693eebafa04d8c7e040015422743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electric properties</topic><topic>Electronics and Microelectronics</topic><topic>Heat conductivity</topic><topic>Instrumentation</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Z.-H.</creatorcontrib><creatorcontrib>Wallace, T. T.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Z.-H.</au><au>Wallace, T. T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functionally Graded Thermoelectric Materials with Arbitrary Property Gradations: A One-Dimensional Semianalytical Study</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2015-06-01</date><risdate>2015</risdate><volume>44</volume><issue>6</issue><spage>1444</spage><epage>1449</epage><pages>1444-1449</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>This paper presents a semianalytical model to obtain the temperature distribution and energy conversion efficiency for functionally graded thermoelectric materials (FGTEMs) with arbitrary property gradients along the direction of the thermoelectric (TE) device leg. A multilayered material model is employed in which the FGTEM is divided into many layers throughout the length of the TE element where each layer is treated as a homogeneous material with constant Seebeck coefficient, electrical resistivity, and thermal conductivity. An approximate, closed-form temperature solution is obtained by solving the heat conduction equation in each homogeneous layer with the conditions of temperature and heat flux continuity across the interfaces between the homogeneous layers. The energy conversion efficiency is subsequently obtained using the approximate temperature solution. Numerical simulations are focused on the effects of the property gradation profile on the efficiency of FGTEMs with sigmoid property gradients. It is found that the peak efficiency may be increased significantly by using appropriately designed property gradients. The present model provides a convenient analytical tool for optimal design of FGTEMs with improved efficiency.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-014-3408-7</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2015-06, Vol.44 (6), p.1444-1449
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_1676460289
source Springer Nature - Complete Springer Journals
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Electric properties
Electronics and Microelectronics
Heat conductivity
Instrumentation
Materials Science
Optical and Electronic Materials
Solid State Physics
title Functionally Graded Thermoelectric Materials with Arbitrary Property Gradations: A One-Dimensional Semianalytical Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A54%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functionally%20Graded%20Thermoelectric%20Materials%20with%20Arbitrary%20Property%20Gradations:%20A%20One-Dimensional%20Semianalytical%20Study&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Jin,%20Z.-H.&rft.date=2015-06-01&rft.volume=44&rft.issue=6&rft.spage=1444&rft.epage=1449&rft.pages=1444-1449&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-014-3408-7&rft_dat=%3Cproquest_cross%3E3668976771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676460289&rft_id=info:pmid/&rfr_iscdi=true