Electret-based microfluidic power generator for harvesting vibrational energy by using ionic liquids

Harvesting ambient vibrational energy for powering autonomous and mobile electronic systems is a challenge, which can be potentially met by microfluidics-based power generator. In this work, we propose a new microfluidic power generator (MPG) based on electret. By periodically compressing the micros...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microfluidics and nanofluidics 2015-05, Vol.18 (5-6), p.1299-1307
Hauptverfasser: Kong, Weijie, Cheng, Lin, He, Xiaodong, Xu, Zhihua, Ma, Xiangyuan, He, Yude, Lu, Liujin, Zhang, Xiaoping, Deng, Youquan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1307
container_issue 5-6
container_start_page 1299
container_title Microfluidics and nanofluidics
container_volume 18
creator Kong, Weijie
Cheng, Lin
He, Xiaodong
Xu, Zhihua
Ma, Xiangyuan
He, Yude
Lu, Liujin
Zhang, Xiaoping
Deng, Youquan
description Harvesting ambient vibrational energy for powering autonomous and mobile electronic systems is a challenge, which can be potentially met by microfluidics-based power generator. In this work, we propose a new microfluidic power generator (MPG) based on electret. By periodically compressing the microscopic conductive liquid bridge between two electrodes, the electrical power is generated. A simple electrical circuit model is developed for theoretical analysis. The experimental and theoretical results imply that the variation magnitude of the top contact area and the surface charge density of the electret are the two critical factors in power generation, and the output power improves drastically with the two factors. Furthermore, this MPG uses the ionic liquid as the liquid media, which can continuously work well in the air under normal conditions and in the wide operating temperature range. By far, the prototype with just single ionic liquid bridge of 15 µL volume and the surface charge density of 0.167 mC/m 2 can generate the maximum effective power of 0.221 µW and the energy per cycle of 7.48 nJ.
doi_str_mv 10.1007/s10404-014-1528-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1676456039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3668957861</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-4bee2d3cb971b0cb5546ec7ab4adeed825f71aea12935001c773cd640e15f913</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcLPE2eB1nLg5oqo8pEpcerdsZxNcpUlrJ0X9e1wFIS4cVrvanRnNDiH3wB-Bc_UUgUsuGQfJIBcLJi7IDArImCxLfvk7L8Q1uYlxy7lUAviMVKsW3RBwYNZErOjOu9DX7egr7-i-_8JAG-wwmKEPtE71acIR4-C7hh69TXvfd6alZ0xzovZEx3i-pW0SaP0hKcVbclWbNuLdT5-Tzctqs3xj64_X9-XzmjmZi4FJiyiqzNlSgeXO5rks0CljpakQq4XIawUGDYgyyzkHp1TmqkJyhLwuIZuTh0l2H_rDmEzqbT-G5C5qKFQh84JnZULBhEqPxhiw1vvgdyacNHB9zlJPWeqUpT5nqUXiiIkTE7ZrMPxR_pf0DdJJePg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676456039</pqid></control><display><type>article</type><title>Electret-based microfluidic power generator for harvesting vibrational energy by using ionic liquids</title><source>SpringerLink Journals - AutoHoldings</source><creator>Kong, Weijie ; Cheng, Lin ; He, Xiaodong ; Xu, Zhihua ; Ma, Xiangyuan ; He, Yude ; Lu, Liujin ; Zhang, Xiaoping ; Deng, Youquan</creator><creatorcontrib>Kong, Weijie ; Cheng, Lin ; He, Xiaodong ; Xu, Zhihua ; Ma, Xiangyuan ; He, Yude ; Lu, Liujin ; Zhang, Xiaoping ; Deng, Youquan</creatorcontrib><description>Harvesting ambient vibrational energy for powering autonomous and mobile electronic systems is a challenge, which can be potentially met by microfluidics-based power generator. In this work, we propose a new microfluidic power generator (MPG) based on electret. By periodically compressing the microscopic conductive liquid bridge between two electrodes, the electrical power is generated. A simple electrical circuit model is developed for theoretical analysis. The experimental and theoretical results imply that the variation magnitude of the top contact area and the surface charge density of the electret are the two critical factors in power generation, and the output power improves drastically with the two factors. Furthermore, this MPG uses the ionic liquid as the liquid media, which can continuously work well in the air under normal conditions and in the wide operating temperature range. By far, the prototype with just single ionic liquid bridge of 15 µL volume and the surface charge density of 0.167 mC/m 2 can generate the maximum effective power of 0.221 µW and the energy per cycle of 7.48 nJ.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-014-1528-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Biomedical Engineering and Bioengineering ; Electric power ; Engineering ; Engineering Fluid Dynamics ; Nanotechnology and Microengineering ; Research Paper ; Theoretical analysis</subject><ispartof>Microfluidics and nanofluidics, 2015-05, Vol.18 (5-6), p.1299-1307</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-4bee2d3cb971b0cb5546ec7ab4adeed825f71aea12935001c773cd640e15f913</citedby><cites>FETCH-LOGICAL-c452t-4bee2d3cb971b0cb5546ec7ab4adeed825f71aea12935001c773cd640e15f913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-014-1528-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-014-1528-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Kong, Weijie</creatorcontrib><creatorcontrib>Cheng, Lin</creatorcontrib><creatorcontrib>He, Xiaodong</creatorcontrib><creatorcontrib>Xu, Zhihua</creatorcontrib><creatorcontrib>Ma, Xiangyuan</creatorcontrib><creatorcontrib>He, Yude</creatorcontrib><creatorcontrib>Lu, Liujin</creatorcontrib><creatorcontrib>Zhang, Xiaoping</creatorcontrib><creatorcontrib>Deng, Youquan</creatorcontrib><title>Electret-based microfluidic power generator for harvesting vibrational energy by using ionic liquids</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>Harvesting ambient vibrational energy for powering autonomous and mobile electronic systems is a challenge, which can be potentially met by microfluidics-based power generator. In this work, we propose a new microfluidic power generator (MPG) based on electret. By periodically compressing the microscopic conductive liquid bridge between two electrodes, the electrical power is generated. A simple electrical circuit model is developed for theoretical analysis. The experimental and theoretical results imply that the variation magnitude of the top contact area and the surface charge density of the electret are the two critical factors in power generation, and the output power improves drastically with the two factors. Furthermore, this MPG uses the ionic liquid as the liquid media, which can continuously work well in the air under normal conditions and in the wide operating temperature range. By far, the prototype with just single ionic liquid bridge of 15 µL volume and the surface charge density of 0.167 mC/m 2 can generate the maximum effective power of 0.221 µW and the energy per cycle of 7.48 nJ.</description><subject>Analytical Chemistry</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Electric power</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Nanotechnology and Microengineering</subject><subject>Research Paper</subject><subject>Theoretical analysis</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1UMtOwzAQtBBIlMIHcLPE2eB1nLg5oqo8pEpcerdsZxNcpUlrJ0X9e1wFIS4cVrvanRnNDiH3wB-Bc_UUgUsuGQfJIBcLJi7IDArImCxLfvk7L8Q1uYlxy7lUAviMVKsW3RBwYNZErOjOu9DX7egr7-i-_8JAG-wwmKEPtE71acIR4-C7hh69TXvfd6alZ0xzovZEx3i-pW0SaP0hKcVbclWbNuLdT5-Tzctqs3xj64_X9-XzmjmZi4FJiyiqzNlSgeXO5rks0CljpakQq4XIawUGDYgyyzkHp1TmqkJyhLwuIZuTh0l2H_rDmEzqbT-G5C5qKFQh84JnZULBhEqPxhiw1vvgdyacNHB9zlJPWeqUpT5nqUXiiIkTE7ZrMPxR_pf0DdJJePg</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Kong, Weijie</creator><creator>Cheng, Lin</creator><creator>He, Xiaodong</creator><creator>Xu, Zhihua</creator><creator>Ma, Xiangyuan</creator><creator>He, Yude</creator><creator>Lu, Liujin</creator><creator>Zhang, Xiaoping</creator><creator>Deng, Youquan</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope></search><sort><creationdate>20150501</creationdate><title>Electret-based microfluidic power generator for harvesting vibrational energy by using ionic liquids</title><author>Kong, Weijie ; Cheng, Lin ; He, Xiaodong ; Xu, Zhihua ; Ma, Xiangyuan ; He, Yude ; Lu, Liujin ; Zhang, Xiaoping ; Deng, Youquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-4bee2d3cb971b0cb5546ec7ab4adeed825f71aea12935001c773cd640e15f913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analytical Chemistry</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Electric power</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Nanotechnology and Microengineering</topic><topic>Research Paper</topic><topic>Theoretical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Weijie</creatorcontrib><creatorcontrib>Cheng, Lin</creatorcontrib><creatorcontrib>He, Xiaodong</creatorcontrib><creatorcontrib>Xu, Zhihua</creatorcontrib><creatorcontrib>Ma, Xiangyuan</creatorcontrib><creatorcontrib>He, Yude</creatorcontrib><creatorcontrib>Lu, Liujin</creatorcontrib><creatorcontrib>Zhang, Xiaoping</creatorcontrib><creatorcontrib>Deng, Youquan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Weijie</au><au>Cheng, Lin</au><au>He, Xiaodong</au><au>Xu, Zhihua</au><au>Ma, Xiangyuan</au><au>He, Yude</au><au>Lu, Liujin</au><au>Zhang, Xiaoping</au><au>Deng, Youquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electret-based microfluidic power generator for harvesting vibrational energy by using ionic liquids</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>18</volume><issue>5-6</issue><spage>1299</spage><epage>1307</epage><pages>1299-1307</pages><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>Harvesting ambient vibrational energy for powering autonomous and mobile electronic systems is a challenge, which can be potentially met by microfluidics-based power generator. In this work, we propose a new microfluidic power generator (MPG) based on electret. By periodically compressing the microscopic conductive liquid bridge between two electrodes, the electrical power is generated. A simple electrical circuit model is developed for theoretical analysis. The experimental and theoretical results imply that the variation magnitude of the top contact area and the surface charge density of the electret are the two critical factors in power generation, and the output power improves drastically with the two factors. Furthermore, this MPG uses the ionic liquid as the liquid media, which can continuously work well in the air under normal conditions and in the wide operating temperature range. By far, the prototype with just single ionic liquid bridge of 15 µL volume and the surface charge density of 0.167 mC/m 2 can generate the maximum effective power of 0.221 µW and the energy per cycle of 7.48 nJ.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-014-1528-2</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-4982
ispartof Microfluidics and nanofluidics, 2015-05, Vol.18 (5-6), p.1299-1307
issn 1613-4982
1613-4990
language eng
recordid cdi_proquest_journals_1676456039
source SpringerLink Journals - AutoHoldings
subjects Analytical Chemistry
Biomedical Engineering and Bioengineering
Electric power
Engineering
Engineering Fluid Dynamics
Nanotechnology and Microengineering
Research Paper
Theoretical analysis
title Electret-based microfluidic power generator for harvesting vibrational energy by using ionic liquids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T07%3A56%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electret-based%20microfluidic%20power%20generator%20for%20harvesting%20vibrational%20energy%20by%20using%20ionic%20liquids&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Kong,%20Weijie&rft.date=2015-05-01&rft.volume=18&rft.issue=5-6&rft.spage=1299&rft.epage=1307&rft.pages=1299-1307&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-014-1528-2&rft_dat=%3Cproquest_cross%3E3668957861%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676456039&rft_id=info:pmid/&rfr_iscdi=true