Focused surface acoustic wave induced jet formation on superhydrophobic surfaces
We investigated the unusual droplet jetting formation as a response to the high intensity of a focused acoustic wave on superhydrophobic surface. When focused surface acoustic waves come into contact with a free surface droplet, an elongated pinched liquid column is formed due to the translation of...
Gespeichert in:
Veröffentlicht in: | Microfluidics and nanofluidics 2015-05, Vol.18 (5-6), p.1107-1114 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1114 |
---|---|
container_issue | 5-6 |
container_start_page | 1107 |
container_title | Microfluidics and nanofluidics |
container_volume | 18 |
creator | Darmawan, Marten Byun, Doyoung |
description | We investigated the unusual droplet jetting formation as a response to the high intensity of a focused acoustic wave on superhydrophobic surface. When focused surface acoustic waves come into contact with a free surface droplet, an elongated pinched liquid column is formed due to the translation of the acoustic radiation force into the inertial body force on the bulk of the droplet. This phenomenon, however, was found to differ as the surface wettability changed. We examined this phenomenon by conducting an experimental observation of the droplet deformation, and a further analysis was carried out using a numerical study, providing a quasi-quantitative analysis of the acoustic radiation pressure distribution. |
doi_str_mv | 10.1007/s10404-014-1503-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1676455913</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3668957651</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-8aaa246f9a220b5acaf043fd8b4faeb5d3e9fd331e6b65f6ce346131aee273033</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8Fz9FJk6btURZXhQU96Dmk6cTt4jY1aZT-e7NUxIswMAPzvjfMI-SSwTUDKG8CAwGCAhOUFcDpdEQWTDJORV3D8e9c5afkLIQdgChzBgvyvHYmBmyzEL3VBjNtXAxjZ7Iv_YlZ17fRpO0Ox8w6v9dj5_osVYgD-u3UejdsXZPkP3w4JydWvwe8-OlL8rq-e1k90M3T_ePqdkMNr-RIK611LqStdZ5DU2ijLQhu26oRVmNTtBxr23LOUDaysNIgF-kFphHzkgPnS3I1-w7efUQMo9q56Pt0UjFZSlEUNTuo2Kwy3oXg0arBd3vtJ8VAHYJTc3AqBacOwakpMfnMhKTt39D_cf4X-gbGF3Km</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676455913</pqid></control><display><type>article</type><title>Focused surface acoustic wave induced jet formation on superhydrophobic surfaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Darmawan, Marten ; Byun, Doyoung</creator><creatorcontrib>Darmawan, Marten ; Byun, Doyoung</creatorcontrib><description>We investigated the unusual droplet jetting formation as a response to the high intensity of a focused acoustic wave on superhydrophobic surface. When focused surface acoustic waves come into contact with a free surface droplet, an elongated pinched liquid column is formed due to the translation of the acoustic radiation force into the inertial body force on the bulk of the droplet. This phenomenon, however, was found to differ as the surface wettability changed. We examined this phenomenon by conducting an experimental observation of the droplet deformation, and a further analysis was carried out using a numerical study, providing a quasi-quantitative analysis of the acoustic radiation pressure distribution.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-014-1503-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Biomedical Engineering and Bioengineering ; Engineering ; Engineering Fluid Dynamics ; Free surfaces ; Nanotechnology and Microengineering ; Pressure distribution ; Research Paper</subject><ispartof>Microfluidics and nanofluidics, 2015-05, Vol.18 (5-6), p.1107-1114</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-8aaa246f9a220b5acaf043fd8b4faeb5d3e9fd331e6b65f6ce346131aee273033</citedby><cites>FETCH-LOGICAL-c386t-8aaa246f9a220b5acaf043fd8b4faeb5d3e9fd331e6b65f6ce346131aee273033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-014-1503-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-014-1503-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Darmawan, Marten</creatorcontrib><creatorcontrib>Byun, Doyoung</creatorcontrib><title>Focused surface acoustic wave induced jet formation on superhydrophobic surfaces</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>We investigated the unusual droplet jetting formation as a response to the high intensity of a focused acoustic wave on superhydrophobic surface. When focused surface acoustic waves come into contact with a free surface droplet, an elongated pinched liquid column is formed due to the translation of the acoustic radiation force into the inertial body force on the bulk of the droplet. This phenomenon, however, was found to differ as the surface wettability changed. We examined this phenomenon by conducting an experimental observation of the droplet deformation, and a further analysis was carried out using a numerical study, providing a quasi-quantitative analysis of the acoustic radiation pressure distribution.</description><subject>Analytical Chemistry</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Free surfaces</subject><subject>Nanotechnology and Microengineering</subject><subject>Pressure distribution</subject><subject>Research Paper</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEFLxDAQhYMouK7-AG8Fz9FJk6btURZXhQU96Dmk6cTt4jY1aZT-e7NUxIswMAPzvjfMI-SSwTUDKG8CAwGCAhOUFcDpdEQWTDJORV3D8e9c5afkLIQdgChzBgvyvHYmBmyzEL3VBjNtXAxjZ7Iv_YlZ17fRpO0Ox8w6v9dj5_osVYgD-u3UejdsXZPkP3w4JydWvwe8-OlL8rq-e1k90M3T_ePqdkMNr-RIK611LqStdZ5DU2ijLQhu26oRVmNTtBxr23LOUDaysNIgF-kFphHzkgPnS3I1-w7efUQMo9q56Pt0UjFZSlEUNTuo2Kwy3oXg0arBd3vtJ8VAHYJTc3AqBacOwakpMfnMhKTt39D_cf4X-gbGF3Km</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Darmawan, Marten</creator><creator>Byun, Doyoung</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope></search><sort><creationdate>20150501</creationdate><title>Focused surface acoustic wave induced jet formation on superhydrophobic surfaces</title><author>Darmawan, Marten ; Byun, Doyoung</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-8aaa246f9a220b5acaf043fd8b4faeb5d3e9fd331e6b65f6ce346131aee273033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analytical Chemistry</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Free surfaces</topic><topic>Nanotechnology and Microengineering</topic><topic>Pressure distribution</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Darmawan, Marten</creatorcontrib><creatorcontrib>Byun, Doyoung</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Darmawan, Marten</au><au>Byun, Doyoung</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Focused surface acoustic wave induced jet formation on superhydrophobic surfaces</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>18</volume><issue>5-6</issue><spage>1107</spage><epage>1114</epage><pages>1107-1114</pages><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>We investigated the unusual droplet jetting formation as a response to the high intensity of a focused acoustic wave on superhydrophobic surface. When focused surface acoustic waves come into contact with a free surface droplet, an elongated pinched liquid column is formed due to the translation of the acoustic radiation force into the inertial body force on the bulk of the droplet. This phenomenon, however, was found to differ as the surface wettability changed. We examined this phenomenon by conducting an experimental observation of the droplet deformation, and a further analysis was carried out using a numerical study, providing a quasi-quantitative analysis of the acoustic radiation pressure distribution.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-014-1503-y</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4982 |
ispartof | Microfluidics and nanofluidics, 2015-05, Vol.18 (5-6), p.1107-1114 |
issn | 1613-4982 1613-4990 |
language | eng |
recordid | cdi_proquest_journals_1676455913 |
source | Springer Nature - Complete Springer Journals |
subjects | Analytical Chemistry Biomedical Engineering and Bioengineering Engineering Engineering Fluid Dynamics Free surfaces Nanotechnology and Microengineering Pressure distribution Research Paper |
title | Focused surface acoustic wave induced jet formation on superhydrophobic surfaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T10%3A13%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Focused%20surface%20acoustic%20wave%20induced%20jet%20formation%20on%20superhydrophobic%20surfaces&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Darmawan,%20Marten&rft.date=2015-05-01&rft.volume=18&rft.issue=5-6&rft.spage=1107&rft.epage=1114&rft.pages=1107-1114&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-014-1503-y&rft_dat=%3Cproquest_cross%3E3668957651%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676455913&rft_id=info:pmid/&rfr_iscdi=true |