On the Performance of Multiobjective Evolutionary Algorithms in Automatic Parameter Extraction of Power Diodes
In this paper, a general, robust, and automatic parameter extraction of nonlinear compact models is presented. The parameter extraction is based on multiobjective optimization using evolutionary algorithms, which allow fitting of several highly nonlinear and highly conflicting characteristics simult...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2015-09, Vol.30 (9), p.4986-4997 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4997 |
---|---|
container_issue | 9 |
container_start_page | 4986 |
container_title | IEEE transactions on power electronics |
container_volume | 30 |
creator | Prada, Daniele Bellini, Marco Stevanovic, Ivica Lemaitre, Laurent Victory, James Vobecky, Jan Sacco, Riccardo Lauritzen, Peter O. |
description | In this paper, a general, robust, and automatic parameter extraction of nonlinear compact models is presented. The parameter extraction is based on multiobjective optimization using evolutionary algorithms, which allow fitting of several highly nonlinear and highly conflicting characteristics simultaneously. Two multiobjective evolutionary algorithms which have been proved to be robust for a wide range of multiobjective problems [1]-[3], the nondominated sorting genetic algorithm II and the multiobjective covariance matrix adaptation evolution strategy, are used in the parameter extraction of a novel power diode compact model based on the lumped charge technique. The performance of the algorithms is assessed using a systematic statistical approach. Good agreement between the simulated and measured characteristics of the power diode shows the accuracy of the used compact model and the efficiency and effectiveness of the proposed multiobjective optimization scheme. |
doi_str_mv | 10.1109/TPEL.2014.2360864 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1676112247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6913536</ieee_id><sourcerecordid>3667464191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3bd6abc9866f4780cbd0578901deb8f6f62765d1dab01acf8b52bec8d046feb33</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpnjhxnGVVykMqahZlHdnOmKZq4uI4Bf6eREWsRhqde0dzCLkFNgNg-cOmWK5mMYNkFnPBpEjOyATyBCIGLDsnEyZlGsk855fkqut2bCBTBhPSrlsatkgL9Nb5RrUGqbP0rd-H2ukdmlAfkS6Pbt8Pi1b5Hzrffzhfh23T0bql8z64RoXa0EJ51WBAT5ffwSsz8mNX4b6G3WPtKuyuyYVV-w5v_uaUvD8tN4uXaLV-fl3MV5GJcx4iriuhtMmlEDbJJDO6YmkmcwYVammFFXEm0goqpRkoY6VOY41GViwRFjXnU3J_6j1499ljF8qd6307nCxBZAIgjpNsoOBEGe-6zqMtD75uhh9LYOWotRy1lqPW8k_rkLk7ZWpE_OdFDjzlgv8Ch0V19A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676112247</pqid></control><display><type>article</type><title>On the Performance of Multiobjective Evolutionary Algorithms in Automatic Parameter Extraction of Power Diodes</title><source>IEEE Electronic Library (IEL)</source><creator>Prada, Daniele ; Bellini, Marco ; Stevanovic, Ivica ; Lemaitre, Laurent ; Victory, James ; Vobecky, Jan ; Sacco, Riccardo ; Lauritzen, Peter O.</creator><creatorcontrib>Prada, Daniele ; Bellini, Marco ; Stevanovic, Ivica ; Lemaitre, Laurent ; Victory, James ; Vobecky, Jan ; Sacco, Riccardo ; Lauritzen, Peter O.</creatorcontrib><description>In this paper, a general, robust, and automatic parameter extraction of nonlinear compact models is presented. The parameter extraction is based on multiobjective optimization using evolutionary algorithms, which allow fitting of several highly nonlinear and highly conflicting characteristics simultaneously. Two multiobjective evolutionary algorithms which have been proved to be robust for a wide range of multiobjective problems [1]-[3], the nondominated sorting genetic algorithm II and the multiobjective covariance matrix adaptation evolution strategy, are used in the parameter extraction of a novel power diode compact model based on the lumped charge technique. The performance of the algorithms is assessed using a systematic statistical approach. Good agreement between the simulated and measured characteristics of the power diode shows the accuracy of the used compact model and the efficiency and effectiveness of the proposed multiobjective optimization scheme.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2014.2360864</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation methods ; Diodes ; Electric power ; Electronic mail ; evolutionary algorithms ; Genetic algorithms ; Mathematical model ; Mathematical models ; Mathematical problems ; Matrix ; Multiobjective optimization ; Optimization ; Optimization algorithms ; Parameter extraction ; power semiconductor devices ; Sociology ; Statistics</subject><ispartof>IEEE transactions on power electronics, 2015-09, Vol.30 (9), p.4986-4997</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3bd6abc9866f4780cbd0578901deb8f6f62765d1dab01acf8b52bec8d046feb33</citedby><cites>FETCH-LOGICAL-c293t-3bd6abc9866f4780cbd0578901deb8f6f62765d1dab01acf8b52bec8d046feb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6913536$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6913536$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Prada, Daniele</creatorcontrib><creatorcontrib>Bellini, Marco</creatorcontrib><creatorcontrib>Stevanovic, Ivica</creatorcontrib><creatorcontrib>Lemaitre, Laurent</creatorcontrib><creatorcontrib>Victory, James</creatorcontrib><creatorcontrib>Vobecky, Jan</creatorcontrib><creatorcontrib>Sacco, Riccardo</creatorcontrib><creatorcontrib>Lauritzen, Peter O.</creatorcontrib><title>On the Performance of Multiobjective Evolutionary Algorithms in Automatic Parameter Extraction of Power Diodes</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>In this paper, a general, robust, and automatic parameter extraction of nonlinear compact models is presented. The parameter extraction is based on multiobjective optimization using evolutionary algorithms, which allow fitting of several highly nonlinear and highly conflicting characteristics simultaneously. Two multiobjective evolutionary algorithms which have been proved to be robust for a wide range of multiobjective problems [1]-[3], the nondominated sorting genetic algorithm II and the multiobjective covariance matrix adaptation evolution strategy, are used in the parameter extraction of a novel power diode compact model based on the lumped charge technique. The performance of the algorithms is assessed using a systematic statistical approach. Good agreement between the simulated and measured characteristics of the power diode shows the accuracy of the used compact model and the efficiency and effectiveness of the proposed multiobjective optimization scheme.</description><subject>Approximation methods</subject><subject>Diodes</subject><subject>Electric power</subject><subject>Electronic mail</subject><subject>evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Matrix</subject><subject>Multiobjective optimization</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Parameter extraction</subject><subject>power semiconductor devices</subject><subject>Sociology</subject><subject>Statistics</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpnjhxnGVVykMqahZlHdnOmKZq4uI4Bf6eREWsRhqde0dzCLkFNgNg-cOmWK5mMYNkFnPBpEjOyATyBCIGLDsnEyZlGsk855fkqut2bCBTBhPSrlsatkgL9Nb5RrUGqbP0rd-H2ukdmlAfkS6Pbt8Pi1b5Hzrffzhfh23T0bql8z64RoXa0EJ51WBAT5ffwSsz8mNX4b6G3WPtKuyuyYVV-w5v_uaUvD8tN4uXaLV-fl3MV5GJcx4iriuhtMmlEDbJJDO6YmkmcwYVammFFXEm0goqpRkoY6VOY41GViwRFjXnU3J_6j1499ljF8qd6307nCxBZAIgjpNsoOBEGe-6zqMtD75uhh9LYOWotRy1lqPW8k_rkLk7ZWpE_OdFDjzlgv8Ch0V19A</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Prada, Daniele</creator><creator>Bellini, Marco</creator><creator>Stevanovic, Ivica</creator><creator>Lemaitre, Laurent</creator><creator>Victory, James</creator><creator>Vobecky, Jan</creator><creator>Sacco, Riccardo</creator><creator>Lauritzen, Peter O.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201509</creationdate><title>On the Performance of Multiobjective Evolutionary Algorithms in Automatic Parameter Extraction of Power Diodes</title><author>Prada, Daniele ; Bellini, Marco ; Stevanovic, Ivica ; Lemaitre, Laurent ; Victory, James ; Vobecky, Jan ; Sacco, Riccardo ; Lauritzen, Peter O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3bd6abc9866f4780cbd0578901deb8f6f62765d1dab01acf8b52bec8d046feb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation methods</topic><topic>Diodes</topic><topic>Electric power</topic><topic>Electronic mail</topic><topic>evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Matrix</topic><topic>Multiobjective optimization</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Parameter extraction</topic><topic>power semiconductor devices</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prada, Daniele</creatorcontrib><creatorcontrib>Bellini, Marco</creatorcontrib><creatorcontrib>Stevanovic, Ivica</creatorcontrib><creatorcontrib>Lemaitre, Laurent</creatorcontrib><creatorcontrib>Victory, James</creatorcontrib><creatorcontrib>Vobecky, Jan</creatorcontrib><creatorcontrib>Sacco, Riccardo</creatorcontrib><creatorcontrib>Lauritzen, Peter O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prada, Daniele</au><au>Bellini, Marco</au><au>Stevanovic, Ivica</au><au>Lemaitre, Laurent</au><au>Victory, James</au><au>Vobecky, Jan</au><au>Sacco, Riccardo</au><au>Lauritzen, Peter O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Performance of Multiobjective Evolutionary Algorithms in Automatic Parameter Extraction of Power Diodes</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2015-09</date><risdate>2015</risdate><volume>30</volume><issue>9</issue><spage>4986</spage><epage>4997</epage><pages>4986-4997</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>In this paper, a general, robust, and automatic parameter extraction of nonlinear compact models is presented. The parameter extraction is based on multiobjective optimization using evolutionary algorithms, which allow fitting of several highly nonlinear and highly conflicting characteristics simultaneously. Two multiobjective evolutionary algorithms which have been proved to be robust for a wide range of multiobjective problems [1]-[3], the nondominated sorting genetic algorithm II and the multiobjective covariance matrix adaptation evolution strategy, are used in the parameter extraction of a novel power diode compact model based on the lumped charge technique. The performance of the algorithms is assessed using a systematic statistical approach. Good agreement between the simulated and measured characteristics of the power diode shows the accuracy of the used compact model and the efficiency and effectiveness of the proposed multiobjective optimization scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2014.2360864</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2015-09, Vol.30 (9), p.4986-4997 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_proquest_journals_1676112247 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation methods Diodes Electric power Electronic mail evolutionary algorithms Genetic algorithms Mathematical model Mathematical models Mathematical problems Matrix Multiobjective optimization Optimization Optimization algorithms Parameter extraction power semiconductor devices Sociology Statistics |
title | On the Performance of Multiobjective Evolutionary Algorithms in Automatic Parameter Extraction of Power Diodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A10%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Performance%20of%20Multiobjective%20Evolutionary%20Algorithms%20in%20Automatic%20Parameter%20Extraction%20of%20Power%20Diodes&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Prada,%20Daniele&rft.date=2015-09&rft.volume=30&rft.issue=9&rft.spage=4986&rft.epage=4997&rft.pages=4986-4997&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2014.2360864&rft_dat=%3Cproquest_RIE%3E3667464191%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676112247&rft_id=info:pmid/&rft_ieee_id=6913536&rfr_iscdi=true |