On the Performance of Multiobjective Evolutionary Algorithms in Automatic Parameter Extraction of Power Diodes

In this paper, a general, robust, and automatic parameter extraction of nonlinear compact models is presented. The parameter extraction is based on multiobjective optimization using evolutionary algorithms, which allow fitting of several highly nonlinear and highly conflicting characteristics simult...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2015-09, Vol.30 (9), p.4986-4997
Hauptverfasser: Prada, Daniele, Bellini, Marco, Stevanovic, Ivica, Lemaitre, Laurent, Victory, James, Vobecky, Jan, Sacco, Riccardo, Lauritzen, Peter O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4997
container_issue 9
container_start_page 4986
container_title IEEE transactions on power electronics
container_volume 30
creator Prada, Daniele
Bellini, Marco
Stevanovic, Ivica
Lemaitre, Laurent
Victory, James
Vobecky, Jan
Sacco, Riccardo
Lauritzen, Peter O.
description In this paper, a general, robust, and automatic parameter extraction of nonlinear compact models is presented. The parameter extraction is based on multiobjective optimization using evolutionary algorithms, which allow fitting of several highly nonlinear and highly conflicting characteristics simultaneously. Two multiobjective evolutionary algorithms which have been proved to be robust for a wide range of multiobjective problems [1]-[3], the nondominated sorting genetic algorithm II and the multiobjective covariance matrix adaptation evolution strategy, are used in the parameter extraction of a novel power diode compact model based on the lumped charge technique. The performance of the algorithms is assessed using a systematic statistical approach. Good agreement between the simulated and measured characteristics of the power diode shows the accuracy of the used compact model and the efficiency and effectiveness of the proposed multiobjective optimization scheme.
doi_str_mv 10.1109/TPEL.2014.2360864
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1676112247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6913536</ieee_id><sourcerecordid>3667464191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-3bd6abc9866f4780cbd0578901deb8f6f62765d1dab01acf8b52bec8d046feb33</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpnjhxnGVVykMqahZlHdnOmKZq4uI4Bf6eREWsRhqde0dzCLkFNgNg-cOmWK5mMYNkFnPBpEjOyATyBCIGLDsnEyZlGsk855fkqut2bCBTBhPSrlsatkgL9Nb5RrUGqbP0rd-H2ukdmlAfkS6Pbt8Pi1b5Hzrffzhfh23T0bql8z64RoXa0EJ51WBAT5ffwSsz8mNX4b6G3WPtKuyuyYVV-w5v_uaUvD8tN4uXaLV-fl3MV5GJcx4iriuhtMmlEDbJJDO6YmkmcwYVammFFXEm0goqpRkoY6VOY41GViwRFjXnU3J_6j1499ljF8qd6307nCxBZAIgjpNsoOBEGe-6zqMtD75uhh9LYOWotRy1lqPW8k_rkLk7ZWpE_OdFDjzlgv8Ch0V19A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1676112247</pqid></control><display><type>article</type><title>On the Performance of Multiobjective Evolutionary Algorithms in Automatic Parameter Extraction of Power Diodes</title><source>IEEE Electronic Library (IEL)</source><creator>Prada, Daniele ; Bellini, Marco ; Stevanovic, Ivica ; Lemaitre, Laurent ; Victory, James ; Vobecky, Jan ; Sacco, Riccardo ; Lauritzen, Peter O.</creator><creatorcontrib>Prada, Daniele ; Bellini, Marco ; Stevanovic, Ivica ; Lemaitre, Laurent ; Victory, James ; Vobecky, Jan ; Sacco, Riccardo ; Lauritzen, Peter O.</creatorcontrib><description>In this paper, a general, robust, and automatic parameter extraction of nonlinear compact models is presented. The parameter extraction is based on multiobjective optimization using evolutionary algorithms, which allow fitting of several highly nonlinear and highly conflicting characteristics simultaneously. Two multiobjective evolutionary algorithms which have been proved to be robust for a wide range of multiobjective problems [1]-[3], the nondominated sorting genetic algorithm II and the multiobjective covariance matrix adaptation evolution strategy, are used in the parameter extraction of a novel power diode compact model based on the lumped charge technique. The performance of the algorithms is assessed using a systematic statistical approach. Good agreement between the simulated and measured characteristics of the power diode shows the accuracy of the used compact model and the efficiency and effectiveness of the proposed multiobjective optimization scheme.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2014.2360864</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation methods ; Diodes ; Electric power ; Electronic mail ; evolutionary algorithms ; Genetic algorithms ; Mathematical model ; Mathematical models ; Mathematical problems ; Matrix ; Multiobjective optimization ; Optimization ; Optimization algorithms ; Parameter extraction ; power semiconductor devices ; Sociology ; Statistics</subject><ispartof>IEEE transactions on power electronics, 2015-09, Vol.30 (9), p.4986-4997</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-3bd6abc9866f4780cbd0578901deb8f6f62765d1dab01acf8b52bec8d046feb33</citedby><cites>FETCH-LOGICAL-c293t-3bd6abc9866f4780cbd0578901deb8f6f62765d1dab01acf8b52bec8d046feb33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6913536$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6913536$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Prada, Daniele</creatorcontrib><creatorcontrib>Bellini, Marco</creatorcontrib><creatorcontrib>Stevanovic, Ivica</creatorcontrib><creatorcontrib>Lemaitre, Laurent</creatorcontrib><creatorcontrib>Victory, James</creatorcontrib><creatorcontrib>Vobecky, Jan</creatorcontrib><creatorcontrib>Sacco, Riccardo</creatorcontrib><creatorcontrib>Lauritzen, Peter O.</creatorcontrib><title>On the Performance of Multiobjective Evolutionary Algorithms in Automatic Parameter Extraction of Power Diodes</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>In this paper, a general, robust, and automatic parameter extraction of nonlinear compact models is presented. The parameter extraction is based on multiobjective optimization using evolutionary algorithms, which allow fitting of several highly nonlinear and highly conflicting characteristics simultaneously. Two multiobjective evolutionary algorithms which have been proved to be robust for a wide range of multiobjective problems [1]-[3], the nondominated sorting genetic algorithm II and the multiobjective covariance matrix adaptation evolution strategy, are used in the parameter extraction of a novel power diode compact model based on the lumped charge technique. The performance of the algorithms is assessed using a systematic statistical approach. Good agreement between the simulated and measured characteristics of the power diode shows the accuracy of the used compact model and the efficiency and effectiveness of the proposed multiobjective optimization scheme.</description><subject>Approximation methods</subject><subject>Diodes</subject><subject>Electric power</subject><subject>Electronic mail</subject><subject>evolutionary algorithms</subject><subject>Genetic algorithms</subject><subject>Mathematical model</subject><subject>Mathematical models</subject><subject>Mathematical problems</subject><subject>Matrix</subject><subject>Multiobjective optimization</subject><subject>Optimization</subject><subject>Optimization algorithms</subject><subject>Parameter extraction</subject><subject>power semiconductor devices</subject><subject>Sociology</subject><subject>Statistics</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpnjhxnGVVykMqahZlHdnOmKZq4uI4Bf6eREWsRhqde0dzCLkFNgNg-cOmWK5mMYNkFnPBpEjOyATyBCIGLDsnEyZlGsk855fkqut2bCBTBhPSrlsatkgL9Nb5RrUGqbP0rd-H2ukdmlAfkS6Pbt8Pi1b5Hzrffzhfh23T0bql8z64RoXa0EJ51WBAT5ffwSsz8mNX4b6G3WPtKuyuyYVV-w5v_uaUvD8tN4uXaLV-fl3MV5GJcx4iriuhtMmlEDbJJDO6YmkmcwYVammFFXEm0goqpRkoY6VOY41GViwRFjXnU3J_6j1499ljF8qd6307nCxBZAIgjpNsoOBEGe-6zqMtD75uhh9LYOWotRy1lqPW8k_rkLk7ZWpE_OdFDjzlgv8Ch0V19A</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Prada, Daniele</creator><creator>Bellini, Marco</creator><creator>Stevanovic, Ivica</creator><creator>Lemaitre, Laurent</creator><creator>Victory, James</creator><creator>Vobecky, Jan</creator><creator>Sacco, Riccardo</creator><creator>Lauritzen, Peter O.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201509</creationdate><title>On the Performance of Multiobjective Evolutionary Algorithms in Automatic Parameter Extraction of Power Diodes</title><author>Prada, Daniele ; Bellini, Marco ; Stevanovic, Ivica ; Lemaitre, Laurent ; Victory, James ; Vobecky, Jan ; Sacco, Riccardo ; Lauritzen, Peter O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-3bd6abc9866f4780cbd0578901deb8f6f62765d1dab01acf8b52bec8d046feb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Approximation methods</topic><topic>Diodes</topic><topic>Electric power</topic><topic>Electronic mail</topic><topic>evolutionary algorithms</topic><topic>Genetic algorithms</topic><topic>Mathematical model</topic><topic>Mathematical models</topic><topic>Mathematical problems</topic><topic>Matrix</topic><topic>Multiobjective optimization</topic><topic>Optimization</topic><topic>Optimization algorithms</topic><topic>Parameter extraction</topic><topic>power semiconductor devices</topic><topic>Sociology</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prada, Daniele</creatorcontrib><creatorcontrib>Bellini, Marco</creatorcontrib><creatorcontrib>Stevanovic, Ivica</creatorcontrib><creatorcontrib>Lemaitre, Laurent</creatorcontrib><creatorcontrib>Victory, James</creatorcontrib><creatorcontrib>Vobecky, Jan</creatorcontrib><creatorcontrib>Sacco, Riccardo</creatorcontrib><creatorcontrib>Lauritzen, Peter O.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Prada, Daniele</au><au>Bellini, Marco</au><au>Stevanovic, Ivica</au><au>Lemaitre, Laurent</au><au>Victory, James</au><au>Vobecky, Jan</au><au>Sacco, Riccardo</au><au>Lauritzen, Peter O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Performance of Multiobjective Evolutionary Algorithms in Automatic Parameter Extraction of Power Diodes</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2015-09</date><risdate>2015</risdate><volume>30</volume><issue>9</issue><spage>4986</spage><epage>4997</epage><pages>4986-4997</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>In this paper, a general, robust, and automatic parameter extraction of nonlinear compact models is presented. The parameter extraction is based on multiobjective optimization using evolutionary algorithms, which allow fitting of several highly nonlinear and highly conflicting characteristics simultaneously. Two multiobjective evolutionary algorithms which have been proved to be robust for a wide range of multiobjective problems [1]-[3], the nondominated sorting genetic algorithm II and the multiobjective covariance matrix adaptation evolution strategy, are used in the parameter extraction of a novel power diode compact model based on the lumped charge technique. The performance of the algorithms is assessed using a systematic statistical approach. Good agreement between the simulated and measured characteristics of the power diode shows the accuracy of the used compact model and the efficiency and effectiveness of the proposed multiobjective optimization scheme.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2014.2360864</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2015-09, Vol.30 (9), p.4986-4997
issn 0885-8993
1941-0107
language eng
recordid cdi_proquest_journals_1676112247
source IEEE Electronic Library (IEL)
subjects Approximation methods
Diodes
Electric power
Electronic mail
evolutionary algorithms
Genetic algorithms
Mathematical model
Mathematical models
Mathematical problems
Matrix
Multiobjective optimization
Optimization
Optimization algorithms
Parameter extraction
power semiconductor devices
Sociology
Statistics
title On the Performance of Multiobjective Evolutionary Algorithms in Automatic Parameter Extraction of Power Diodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A10%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Performance%20of%20Multiobjective%20Evolutionary%20Algorithms%20in%20Automatic%20Parameter%20Extraction%20of%20Power%20Diodes&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Prada,%20Daniele&rft.date=2015-09&rft.volume=30&rft.issue=9&rft.spage=4986&rft.epage=4997&rft.pages=4986-4997&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2014.2360864&rft_dat=%3Cproquest_RIE%3E3667464191%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1676112247&rft_id=info:pmid/&rft_ieee_id=6913536&rfr_iscdi=true