The Generalized Linear Mixed Cluster-Weighted Model

Cluster-weighted models (CWMs) are a flexible family of mixture models for fitting the joint distribution of a random vector composed of a response variable and a set of covariates. CWMs act as a convex combination of the products of the marginal distribution of the covariates and the conditional di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of classification 2015-04, Vol.32 (1), p.85-113
Hauptverfasser: Ingrassia, Salvatore, Punzo, Antonio, Vittadini, Giorgio, Minotti, Simona C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 1
container_start_page 85
container_title Journal of classification
container_volume 32
creator Ingrassia, Salvatore
Punzo, Antonio
Vittadini, Giorgio
Minotti, Simona C.
description Cluster-weighted models (CWMs) are a flexible family of mixture models for fitting the joint distribution of a random vector composed of a response variable and a set of covariates. CWMs act as a convex combination of the products of the marginal distribution of the covariates and the conditional distribution of the response given the covariates. In this paper, we introduce a broad family of CWMs in which the component conditional distributions are assumed to belong to the exponential family and the covariates are allowed to be of mixed-type. Under the assumption of Gaussian covariates, sufficient conditions for model identifiability are provided. Moreover, maximum likelihood parameter estimates are derived using the EM algorithm. Parameter recovery, classification assessment, and performance of some information criteria are investigated through a broad simulation design. An application to real data is finally presented, with the proposed model outperforming other well-established mixture-based approaches.
doi_str_mv 10.1007/s00357-015-9175-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1674910482</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3662707981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-93f1deb041363fd0641d20c7605621e45cedae885173bbd2314b62385c420ca53</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLeC59WZ_UyPUrQKLV4qHpckO2lTYlJ3E1B_vVviwYunYYbnfQcexq4RbhHA3kUAqS0H1HyOVnM8YRNUUnCUSp6yCaA1XAmTnbOLGPeQMsbYCZObHc2W1FLIm_qb_GxVt5SH2br-TMuiGWJPgb9Rvd316bDuPDWX7KzKm0hXv3PKXh8fNosnvnpZPi_uV7yUmen5XFboqQCF0sjKg1HoBZTWgDYCSemSfE5ZptHKovBCoiqMkJkuVcJyLafsZuw9hO5joNi7fTeENr10aKyaI6hMJApHqgxdjIEqdwj1ex6-HII7unGjG5fcuKMbhykjxkxMbLul8Kf539APLR1kPg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674910482</pqid></control><display><type>article</type><title>The Generalized Linear Mixed Cluster-Weighted Model</title><source>Springer Nature - Complete Springer Journals</source><creator>Ingrassia, Salvatore ; Punzo, Antonio ; Vittadini, Giorgio ; Minotti, Simona C.</creator><creatorcontrib>Ingrassia, Salvatore ; Punzo, Antonio ; Vittadini, Giorgio ; Minotti, Simona C.</creatorcontrib><description>Cluster-weighted models (CWMs) are a flexible family of mixture models for fitting the joint distribution of a random vector composed of a response variable and a set of covariates. CWMs act as a convex combination of the products of the marginal distribution of the covariates and the conditional distribution of the response given the covariates. In this paper, we introduce a broad family of CWMs in which the component conditional distributions are assumed to belong to the exponential family and the covariates are allowed to be of mixed-type. Under the assumption of Gaussian covariates, sufficient conditions for model identifiability are provided. Moreover, maximum likelihood parameter estimates are derived using the EM algorithm. Parameter recovery, classification assessment, and performance of some information criteria are investigated through a broad simulation design. An application to real data is finally presented, with the proposed model outperforming other well-established mixture-based approaches.</description><identifier>ISSN: 0176-4268</identifier><identifier>EISSN: 1432-1343</identifier><identifier>DOI: 10.1007/s00357-015-9175-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Bioinformatics ; Cluster analysis ; Generalized linear models ; Marketing ; Mathematics and Statistics ; Pattern Recognition ; Psychometrics ; Signal,Image and Speech Processing ; Statistical Theory and Methods ; Statistics</subject><ispartof>Journal of classification, 2015-04, Vol.32 (1), p.85-113</ispartof><rights>Classification Society of North America 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-93f1deb041363fd0641d20c7605621e45cedae885173bbd2314b62385c420ca53</citedby><cites>FETCH-LOGICAL-c386t-93f1deb041363fd0641d20c7605621e45cedae885173bbd2314b62385c420ca53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00357-015-9175-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00357-015-9175-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Ingrassia, Salvatore</creatorcontrib><creatorcontrib>Punzo, Antonio</creatorcontrib><creatorcontrib>Vittadini, Giorgio</creatorcontrib><creatorcontrib>Minotti, Simona C.</creatorcontrib><title>The Generalized Linear Mixed Cluster-Weighted Model</title><title>Journal of classification</title><addtitle>J Classif</addtitle><description>Cluster-weighted models (CWMs) are a flexible family of mixture models for fitting the joint distribution of a random vector composed of a response variable and a set of covariates. CWMs act as a convex combination of the products of the marginal distribution of the covariates and the conditional distribution of the response given the covariates. In this paper, we introduce a broad family of CWMs in which the component conditional distributions are assumed to belong to the exponential family and the covariates are allowed to be of mixed-type. Under the assumption of Gaussian covariates, sufficient conditions for model identifiability are provided. Moreover, maximum likelihood parameter estimates are derived using the EM algorithm. Parameter recovery, classification assessment, and performance of some information criteria are investigated through a broad simulation design. An application to real data is finally presented, with the proposed model outperforming other well-established mixture-based approaches.</description><subject>Algorithms</subject><subject>Bioinformatics</subject><subject>Cluster analysis</subject><subject>Generalized linear models</subject><subject>Marketing</subject><subject>Mathematics and Statistics</subject><subject>Pattern Recognition</subject><subject>Psychometrics</subject><subject>Signal,Image and Speech Processing</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><issn>0176-4268</issn><issn>1432-1343</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE1Lw0AQhhdRsFZ_gLeC59WZ_UyPUrQKLV4qHpckO2lTYlJ3E1B_vVviwYunYYbnfQcexq4RbhHA3kUAqS0H1HyOVnM8YRNUUnCUSp6yCaA1XAmTnbOLGPeQMsbYCZObHc2W1FLIm_qb_GxVt5SH2br-TMuiGWJPgb9Rvd316bDuPDWX7KzKm0hXv3PKXh8fNosnvnpZPi_uV7yUmen5XFboqQCF0sjKg1HoBZTWgDYCSemSfE5ZptHKovBCoiqMkJkuVcJyLafsZuw9hO5joNi7fTeENr10aKyaI6hMJApHqgxdjIEqdwj1ex6-HII7unGjG5fcuKMbhykjxkxMbLul8Kf539APLR1kPg</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Ingrassia, Salvatore</creator><creator>Punzo, Antonio</creator><creator>Vittadini, Giorgio</creator><creator>Minotti, Simona C.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M0N</scope><scope>M1O</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20150401</creationdate><title>The Generalized Linear Mixed Cluster-Weighted Model</title><author>Ingrassia, Salvatore ; Punzo, Antonio ; Vittadini, Giorgio ; Minotti, Simona C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-93f1deb041363fd0641d20c7605621e45cedae885173bbd2314b62385c420ca53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Bioinformatics</topic><topic>Cluster analysis</topic><topic>Generalized linear models</topic><topic>Marketing</topic><topic>Mathematics and Statistics</topic><topic>Pattern Recognition</topic><topic>Psychometrics</topic><topic>Signal,Image and Speech Processing</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ingrassia, Salvatore</creatorcontrib><creatorcontrib>Punzo, Antonio</creatorcontrib><creatorcontrib>Vittadini, Giorgio</creatorcontrib><creatorcontrib>Minotti, Simona C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library &amp; Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of classification</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ingrassia, Salvatore</au><au>Punzo, Antonio</au><au>Vittadini, Giorgio</au><au>Minotti, Simona C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Generalized Linear Mixed Cluster-Weighted Model</atitle><jtitle>Journal of classification</jtitle><stitle>J Classif</stitle><date>2015-04-01</date><risdate>2015</risdate><volume>32</volume><issue>1</issue><spage>85</spage><epage>113</epage><pages>85-113</pages><issn>0176-4268</issn><eissn>1432-1343</eissn><abstract>Cluster-weighted models (CWMs) are a flexible family of mixture models for fitting the joint distribution of a random vector composed of a response variable and a set of covariates. CWMs act as a convex combination of the products of the marginal distribution of the covariates and the conditional distribution of the response given the covariates. In this paper, we introduce a broad family of CWMs in which the component conditional distributions are assumed to belong to the exponential family and the covariates are allowed to be of mixed-type. Under the assumption of Gaussian covariates, sufficient conditions for model identifiability are provided. Moreover, maximum likelihood parameter estimates are derived using the EM algorithm. Parameter recovery, classification assessment, and performance of some information criteria are investigated through a broad simulation design. An application to real data is finally presented, with the proposed model outperforming other well-established mixture-based approaches.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00357-015-9175-1</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0176-4268
ispartof Journal of classification, 2015-04, Vol.32 (1), p.85-113
issn 0176-4268
1432-1343
language eng
recordid cdi_proquest_journals_1674910482
source Springer Nature - Complete Springer Journals
subjects Algorithms
Bioinformatics
Cluster analysis
Generalized linear models
Marketing
Mathematics and Statistics
Pattern Recognition
Psychometrics
Signal,Image and Speech Processing
Statistical Theory and Methods
Statistics
title The Generalized Linear Mixed Cluster-Weighted Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A53%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Generalized%20Linear%20Mixed%20Cluster-Weighted%20Model&rft.jtitle=Journal%20of%20classification&rft.au=Ingrassia,%20Salvatore&rft.date=2015-04-01&rft.volume=32&rft.issue=1&rft.spage=85&rft.epage=113&rft.pages=85-113&rft.issn=0176-4268&rft.eissn=1432-1343&rft_id=info:doi/10.1007/s00357-015-9175-1&rft_dat=%3Cproquest_cross%3E3662707981%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1674910482&rft_id=info:pmid/&rfr_iscdi=true