A Survey of Research on Cloud Robotics and Automation
The Cloud infrastructure and its extensive set of Internet-accessible resources has potential to provide significant benefits to robots and automation systems. We consider robots and automation systems that rely on data or code from a network to support their operation, i.e., where not all sensing,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automation science and engineering 2015-04, Vol.12 (2), p.398-409 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 409 |
---|---|
container_issue | 2 |
container_start_page | 398 |
container_title | IEEE transactions on automation science and engineering |
container_volume | 12 |
creator | Kehoe, Ben Patil, Sachin Abbeel, Pieter Goldberg, Ken |
description | The Cloud infrastructure and its extensive set of Internet-accessible resources has potential to provide significant benefits to robots and automation systems. We consider robots and automation systems that rely on data or code from a network to support their operation, i.e., where not all sensing, computation, and memory is integrated into a standalone system. This survey is organized around four potential benefits of the Cloud: 1) Big Data: access to libraries of images, maps, trajectories, and descriptive data; 2) Cloud Computing: access to parallel grid computing on demand for statistical analysis, learning, and motion planning; 3) Collective Robot Learning: robots sharing trajectories, control policies, and outcomes; and 4) Human Computation: use of crowdsourcing to tap human skills for analyzing images and video, classification, learning, and error recovery. The Cloud can also improve robots and automation systems by providing access to: a) datasets, publications, models, benchmarks, and simulation tools; b) open competitions for designs and systems; and c) open-source software. This survey includes over 150 references on results and open challenges. A website with new developments and updates is available at: http://goldberg.berkeley.edu/cloud-robotics/. |
doi_str_mv | 10.1109/TASE.2014.2376492 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1674475198</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7006734</ieee_id><sourcerecordid>3660532341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-2d647afff0b3465108d50624f5c70c66289319dc648072533b8bcdb602a6902a3</originalsourceid><addsrcrecordid>eNo9kMtqwzAQRUVpoWnaDyjdCLp2OnpLSxPSBwQKSboWtixTh8RKJbuQv6-NQzdzZ3HuDByEHgksCAHzssu3qwUFwheUKckNvUIzIoTOmNLsety5yIQR4hbdpbQHoFwbmCGR420ff_0ZhxpvfPJFdN84tHh5CH2FN6EMXeMSLtoK530XjkXXhPYe3dTFIfmHS87R1-tqt3zP1p9vH8t8nTkuoMtoJbkq6rqGknEpCOhKgKS8Fk6Bk5Jqw4ipnOQaFBWMlbp0VSmBFtIMg83R83T3FMNP71Nn96GP7fDSEqk4V4IYPVBkolwMKUVf21NsjkU8WwJ2tGNHO3a0Yy92hs7T1Gm89_-8ApCKcfYHMspdyw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1674475198</pqid></control><display><type>article</type><title>A Survey of Research on Cloud Robotics and Automation</title><source>IEEE Electronic Library (IEL)</source><creator>Kehoe, Ben ; Patil, Sachin ; Abbeel, Pieter ; Goldberg, Ken</creator><creatorcontrib>Kehoe, Ben ; Patil, Sachin ; Abbeel, Pieter ; Goldberg, Ken</creatorcontrib><description>The Cloud infrastructure and its extensive set of Internet-accessible resources has potential to provide significant benefits to robots and automation systems. We consider robots and automation systems that rely on data or code from a network to support their operation, i.e., where not all sensing, computation, and memory is integrated into a standalone system. This survey is organized around four potential benefits of the Cloud: 1) Big Data: access to libraries of images, maps, trajectories, and descriptive data; 2) Cloud Computing: access to parallel grid computing on demand for statistical analysis, learning, and motion planning; 3) Collective Robot Learning: robots sharing trajectories, control policies, and outcomes; and 4) Human Computation: use of crowdsourcing to tap human skills for analyzing images and video, classification, learning, and error recovery. The Cloud can also improve robots and automation systems by providing access to: a) datasets, publications, models, benchmarks, and simulation tools; b) open competitions for designs and systems; and c) open-source software. This survey includes over 150 references on results and open challenges. A website with new developments and updates is available at: http://goldberg.berkeley.edu/cloud-robotics/.</description><identifier>ISSN: 1545-5955</identifier><identifier>EISSN: 1558-3783</identifier><identifier>DOI: 10.1109/TASE.2014.2376492</identifier><identifier>CODEN: ITASC7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automation ; Big data ; cloud automation ; Cloud computing ; cloud robotics ; Computational modeling ; Crowdsourcing ; open source ; Robot kinematics ; Robot sensing systems ; Robots ; Simulation</subject><ispartof>IEEE transactions on automation science and engineering, 2015-04, Vol.12 (2), p.398-409</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-2d647afff0b3465108d50624f5c70c66289319dc648072533b8bcdb602a6902a3</citedby><cites>FETCH-LOGICAL-c450t-2d647afff0b3465108d50624f5c70c66289319dc648072533b8bcdb602a6902a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7006734$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Kehoe, Ben</creatorcontrib><creatorcontrib>Patil, Sachin</creatorcontrib><creatorcontrib>Abbeel, Pieter</creatorcontrib><creatorcontrib>Goldberg, Ken</creatorcontrib><title>A Survey of Research on Cloud Robotics and Automation</title><title>IEEE transactions on automation science and engineering</title><addtitle>TASE</addtitle><description>The Cloud infrastructure and its extensive set of Internet-accessible resources has potential to provide significant benefits to robots and automation systems. We consider robots and automation systems that rely on data or code from a network to support their operation, i.e., where not all sensing, computation, and memory is integrated into a standalone system. This survey is organized around four potential benefits of the Cloud: 1) Big Data: access to libraries of images, maps, trajectories, and descriptive data; 2) Cloud Computing: access to parallel grid computing on demand for statistical analysis, learning, and motion planning; 3) Collective Robot Learning: robots sharing trajectories, control policies, and outcomes; and 4) Human Computation: use of crowdsourcing to tap human skills for analyzing images and video, classification, learning, and error recovery. The Cloud can also improve robots and automation systems by providing access to: a) datasets, publications, models, benchmarks, and simulation tools; b) open competitions for designs and systems; and c) open-source software. This survey includes over 150 references on results and open challenges. A website with new developments and updates is available at: http://goldberg.berkeley.edu/cloud-robotics/.</description><subject>Automation</subject><subject>Big data</subject><subject>cloud automation</subject><subject>Cloud computing</subject><subject>cloud robotics</subject><subject>Computational modeling</subject><subject>Crowdsourcing</subject><subject>open source</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><subject>Robots</subject><subject>Simulation</subject><issn>1545-5955</issn><issn>1558-3783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtqwzAQRUVpoWnaDyjdCLp2OnpLSxPSBwQKSboWtixTh8RKJbuQv6-NQzdzZ3HuDByEHgksCAHzssu3qwUFwheUKckNvUIzIoTOmNLsety5yIQR4hbdpbQHoFwbmCGR420ff_0ZhxpvfPJFdN84tHh5CH2FN6EMXeMSLtoK530XjkXXhPYe3dTFIfmHS87R1-tqt3zP1p9vH8t8nTkuoMtoJbkq6rqGknEpCOhKgKS8Fk6Bk5Jqw4ipnOQaFBWMlbp0VSmBFtIMg83R83T3FMNP71Nn96GP7fDSEqk4V4IYPVBkolwMKUVf21NsjkU8WwJ2tGNHO3a0Yy92hs7T1Gm89_-8ApCKcfYHMspdyw</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Kehoe, Ben</creator><creator>Patil, Sachin</creator><creator>Abbeel, Pieter</creator><creator>Goldberg, Ken</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201504</creationdate><title>A Survey of Research on Cloud Robotics and Automation</title><author>Kehoe, Ben ; Patil, Sachin ; Abbeel, Pieter ; Goldberg, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-2d647afff0b3465108d50624f5c70c66289319dc648072533b8bcdb602a6902a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Automation</topic><topic>Big data</topic><topic>cloud automation</topic><topic>Cloud computing</topic><topic>cloud robotics</topic><topic>Computational modeling</topic><topic>Crowdsourcing</topic><topic>open source</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><topic>Robots</topic><topic>Simulation</topic><toplevel>online_resources</toplevel><creatorcontrib>Kehoe, Ben</creatorcontrib><creatorcontrib>Patil, Sachin</creatorcontrib><creatorcontrib>Abbeel, Pieter</creatorcontrib><creatorcontrib>Goldberg, Ken</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automation science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kehoe, Ben</au><au>Patil, Sachin</au><au>Abbeel, Pieter</au><au>Goldberg, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey of Research on Cloud Robotics and Automation</atitle><jtitle>IEEE transactions on automation science and engineering</jtitle><stitle>TASE</stitle><date>2015-04</date><risdate>2015</risdate><volume>12</volume><issue>2</issue><spage>398</spage><epage>409</epage><pages>398-409</pages><issn>1545-5955</issn><eissn>1558-3783</eissn><coden>ITASC7</coden><abstract>The Cloud infrastructure and its extensive set of Internet-accessible resources has potential to provide significant benefits to robots and automation systems. We consider robots and automation systems that rely on data or code from a network to support their operation, i.e., where not all sensing, computation, and memory is integrated into a standalone system. This survey is organized around four potential benefits of the Cloud: 1) Big Data: access to libraries of images, maps, trajectories, and descriptive data; 2) Cloud Computing: access to parallel grid computing on demand for statistical analysis, learning, and motion planning; 3) Collective Robot Learning: robots sharing trajectories, control policies, and outcomes; and 4) Human Computation: use of crowdsourcing to tap human skills for analyzing images and video, classification, learning, and error recovery. The Cloud can also improve robots and automation systems by providing access to: a) datasets, publications, models, benchmarks, and simulation tools; b) open competitions for designs and systems; and c) open-source software. This survey includes over 150 references on results and open challenges. A website with new developments and updates is available at: http://goldberg.berkeley.edu/cloud-robotics/.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASE.2014.2376492</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-5955 |
ispartof | IEEE transactions on automation science and engineering, 2015-04, Vol.12 (2), p.398-409 |
issn | 1545-5955 1558-3783 |
language | eng |
recordid | cdi_proquest_journals_1674475198 |
source | IEEE Electronic Library (IEL) |
subjects | Automation Big data cloud automation Cloud computing cloud robotics Computational modeling Crowdsourcing open source Robot kinematics Robot sensing systems Robots Simulation |
title | A Survey of Research on Cloud Robotics and Automation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A05%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20of%20Research%20on%20Cloud%20Robotics%20and%20Automation&rft.jtitle=IEEE%20transactions%20on%20automation%20science%20and%20engineering&rft.au=Kehoe,%20Ben&rft.date=2015-04&rft.volume=12&rft.issue=2&rft.spage=398&rft.epage=409&rft.pages=398-409&rft.issn=1545-5955&rft.eissn=1558-3783&rft.coden=ITASC7&rft_id=info:doi/10.1109/TASE.2014.2376492&rft_dat=%3Cproquest_cross%3E3660532341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1674475198&rft_id=info:pmid/&rft_ieee_id=7006734&rfr_iscdi=true |