A Survey of Research on Cloud Robotics and Automation

The Cloud infrastructure and its extensive set of Internet-accessible resources has potential to provide significant benefits to robots and automation systems. We consider robots and automation systems that rely on data or code from a network to support their operation, i.e., where not all sensing,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automation science and engineering 2015-04, Vol.12 (2), p.398-409
Hauptverfasser: Kehoe, Ben, Patil, Sachin, Abbeel, Pieter, Goldberg, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Cloud infrastructure and its extensive set of Internet-accessible resources has potential to provide significant benefits to robots and automation systems. We consider robots and automation systems that rely on data or code from a network to support their operation, i.e., where not all sensing, computation, and memory is integrated into a standalone system. This survey is organized around four potential benefits of the Cloud: 1) Big Data: access to libraries of images, maps, trajectories, and descriptive data; 2) Cloud Computing: access to parallel grid computing on demand for statistical analysis, learning, and motion planning; 3) Collective Robot Learning: robots sharing trajectories, control policies, and outcomes; and 4) Human Computation: use of crowdsourcing to tap human skills for analyzing images and video, classification, learning, and error recovery. The Cloud can also improve robots and automation systems by providing access to: a) datasets, publications, models, benchmarks, and simulation tools; b) open competitions for designs and systems; and c) open-source software. This survey includes over 150 references on results and open challenges. A website with new developments and updates is available at: http://goldberg.berkeley.edu/cloud-robotics/.
ISSN:1545-5955
1558-3783
DOI:10.1109/TASE.2014.2376492