Regional regression models for hydro‐climate change impact assessment

Hydro‐climatic impacts in water resources systems are typically assessed by forcing a hydrologic model with outputs from general circulation models (GCMs) or regional climate models. The challenges of this approach include maintaining a consistent energy budget between climate and hydrologic models...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 2015-04, Vol.29 (8), p.1972-1985
Hauptverfasser: Gyawali, Rabi, Griffis, Veronica W, Watkins, David W, Fennessey, Neil M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1985
container_issue 8
container_start_page 1972
container_title Hydrological processes
container_volume 29
creator Gyawali, Rabi
Griffis, Veronica W
Watkins, David W
Fennessey, Neil M
description Hydro‐climatic impacts in water resources systems are typically assessed by forcing a hydrologic model with outputs from general circulation models (GCMs) or regional climate models. The challenges of this approach include maintaining a consistent energy budget between climate and hydrologic models and also properly calibrating and verifying the hydrologic models. Subjective choices of loss, flow routing, snowmelt and evapotranspiration computation methods also increase watershed modelling uncertainty and thus complicate impact assessment. An alternative approach, particularly appealing for ungauged basins or locations where record lengths are short, is to predict selected streamflow quantiles directly from meteorological variable output from climate models using regional regression models that also include physical basin characteristics. In this study, regional regression models are developed for the western Great Lakes states using ordinary least squares and weighted least squares techniques applied to selected Great Lakes watersheds. Model inputs include readily available downscaled GCM outputs from the Coupled Model Intercomparison Project Phase 3. The model results provide insights to potential model weaknesses, including comparatively low runoff predictions from continuous simulation models that estimate potential evapotranspiration using temperature proxy information and comparatively high runoff projections from regression models that do not include temperature as an explanatory variable. Copyright © 2014 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/hyp.10312
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1673829237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3657317371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3592-4976a9ff2fa5c869dcd3cff4f498308769062649bbb336f47765bcec315d87e13</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4AuIxIpFqB-xYy9RRVukCsqjIFaW69htStoEOxVkxyfwjXwJhgA7VjMjnTO6ugAcIniKIMS9RVOFhSC8BToIChEjyOk26EDOacwgT3fBnvdLCGECOeyA4Y2Z5-VaFZEzc2e8D0e0KjNT-MiWLlo0mSs_3t51ka9UbSK9UOu5ifJVpXQdKe-DsjLreh_sWFV4c_Azu2A6OL_rj-Lx1fCifzaONaECx4lImRLWYquo5kxkOiPa2sQmgpOQjgnIMEvEbDYjhNkkTRmdaaMJohlPDSJdcNz-rVz5vDG-lsty40J-LxFLCccCkzRQJy2lXem9M1ZWLuR3jURQfvUkQ0_yu6fA9lr2JS9M8z8oR4-TXyNujdzX5vXPUO5JhggplQ-XQ9kf3Fzf0_5ETgJ_1PJWlVLNXe7l9BZDRMN_SElCySfTvILp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673829237</pqid></control><display><type>article</type><title>Regional regression models for hydro‐climate change impact assessment</title><source>Wiley Journals</source><creator>Gyawali, Rabi ; Griffis, Veronica W ; Watkins, David W ; Fennessey, Neil M</creator><creatorcontrib>Gyawali, Rabi ; Griffis, Veronica W ; Watkins, David W ; Fennessey, Neil M</creatorcontrib><description>Hydro‐climatic impacts in water resources systems are typically assessed by forcing a hydrologic model with outputs from general circulation models (GCMs) or regional climate models. The challenges of this approach include maintaining a consistent energy budget between climate and hydrologic models and also properly calibrating and verifying the hydrologic models. Subjective choices of loss, flow routing, snowmelt and evapotranspiration computation methods also increase watershed modelling uncertainty and thus complicate impact assessment. An alternative approach, particularly appealing for ungauged basins or locations where record lengths are short, is to predict selected streamflow quantiles directly from meteorological variable output from climate models using regional regression models that also include physical basin characteristics. In this study, regional regression models are developed for the western Great Lakes states using ordinary least squares and weighted least squares techniques applied to selected Great Lakes watersheds. Model inputs include readily available downscaled GCM outputs from the Coupled Model Intercomparison Project Phase 3. The model results provide insights to potential model weaknesses, including comparatively low runoff predictions from continuous simulation models that estimate potential evapotranspiration using temperature proxy information and comparatively high runoff projections from regression models that do not include temperature as an explanatory variable. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0885-6087</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/hyp.10312</identifier><language>eng</language><publisher>Chichester: Wiley</publisher><subject>basins ; climate ; climate change ; energy ; evapotranspiration ; General Circulation Models ; Great Lakes basin ; hydro-climatic framework ; hydrologic models ; least squares ; PET ; prediction ; regional regression models ; runoff ; simulation models ; snowmelt ; stream flow ; temperature ; uncertainty ; water resources ; watersheds</subject><ispartof>Hydrological processes, 2015-04, Vol.29 (8), p.1972-1985</ispartof><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3592-4976a9ff2fa5c869dcd3cff4f498308769062649bbb336f47765bcec315d87e13</citedby><cites>FETCH-LOGICAL-c3592-4976a9ff2fa5c869dcd3cff4f498308769062649bbb336f47765bcec315d87e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhyp.10312$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhyp.10312$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gyawali, Rabi</creatorcontrib><creatorcontrib>Griffis, Veronica W</creatorcontrib><creatorcontrib>Watkins, David W</creatorcontrib><creatorcontrib>Fennessey, Neil M</creatorcontrib><title>Regional regression models for hydro‐climate change impact assessment</title><title>Hydrological processes</title><addtitle>Hydrol. Process</addtitle><description>Hydro‐climatic impacts in water resources systems are typically assessed by forcing a hydrologic model with outputs from general circulation models (GCMs) or regional climate models. The challenges of this approach include maintaining a consistent energy budget between climate and hydrologic models and also properly calibrating and verifying the hydrologic models. Subjective choices of loss, flow routing, snowmelt and evapotranspiration computation methods also increase watershed modelling uncertainty and thus complicate impact assessment. An alternative approach, particularly appealing for ungauged basins or locations where record lengths are short, is to predict selected streamflow quantiles directly from meteorological variable output from climate models using regional regression models that also include physical basin characteristics. In this study, regional regression models are developed for the western Great Lakes states using ordinary least squares and weighted least squares techniques applied to selected Great Lakes watersheds. Model inputs include readily available downscaled GCM outputs from the Coupled Model Intercomparison Project Phase 3. The model results provide insights to potential model weaknesses, including comparatively low runoff predictions from continuous simulation models that estimate potential evapotranspiration using temperature proxy information and comparatively high runoff projections from regression models that do not include temperature as an explanatory variable. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><subject>basins</subject><subject>climate</subject><subject>climate change</subject><subject>energy</subject><subject>evapotranspiration</subject><subject>General Circulation Models</subject><subject>Great Lakes basin</subject><subject>hydro-climatic framework</subject><subject>hydrologic models</subject><subject>least squares</subject><subject>PET</subject><subject>prediction</subject><subject>regional regression models</subject><subject>runoff</subject><subject>simulation models</subject><subject>snowmelt</subject><subject>stream flow</subject><subject>temperature</subject><subject>uncertainty</subject><subject>water resources</subject><subject>watersheds</subject><issn>0885-6087</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4AuIxIpFqB-xYy9RRVukCsqjIFaW69htStoEOxVkxyfwjXwJhgA7VjMjnTO6ugAcIniKIMS9RVOFhSC8BToIChEjyOk26EDOacwgT3fBnvdLCGECOeyA4Y2Z5-VaFZEzc2e8D0e0KjNT-MiWLlo0mSs_3t51ka9UbSK9UOu5ifJVpXQdKe-DsjLreh_sWFV4c_Azu2A6OL_rj-Lx1fCifzaONaECx4lImRLWYquo5kxkOiPa2sQmgpOQjgnIMEvEbDYjhNkkTRmdaaMJohlPDSJdcNz-rVz5vDG-lsty40J-LxFLCccCkzRQJy2lXem9M1ZWLuR3jURQfvUkQ0_yu6fA9lr2JS9M8z8oR4-TXyNujdzX5vXPUO5JhggplQ-XQ9kf3Fzf0_5ETgJ_1PJWlVLNXe7l9BZDRMN_SElCySfTvILp</recordid><startdate>20150415</startdate><enddate>20150415</enddate><creator>Gyawali, Rabi</creator><creator>Griffis, Veronica W</creator><creator>Watkins, David W</creator><creator>Fennessey, Neil M</creator><general>Wiley</general><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20150415</creationdate><title>Regional regression models for hydro‐climate change impact assessment</title><author>Gyawali, Rabi ; Griffis, Veronica W ; Watkins, David W ; Fennessey, Neil M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3592-4976a9ff2fa5c869dcd3cff4f498308769062649bbb336f47765bcec315d87e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>basins</topic><topic>climate</topic><topic>climate change</topic><topic>energy</topic><topic>evapotranspiration</topic><topic>General Circulation Models</topic><topic>Great Lakes basin</topic><topic>hydro-climatic framework</topic><topic>hydrologic models</topic><topic>least squares</topic><topic>PET</topic><topic>prediction</topic><topic>regional regression models</topic><topic>runoff</topic><topic>simulation models</topic><topic>snowmelt</topic><topic>stream flow</topic><topic>temperature</topic><topic>uncertainty</topic><topic>water resources</topic><topic>watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gyawali, Rabi</creatorcontrib><creatorcontrib>Griffis, Veronica W</creatorcontrib><creatorcontrib>Watkins, David W</creatorcontrib><creatorcontrib>Fennessey, Neil M</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gyawali, Rabi</au><au>Griffis, Veronica W</au><au>Watkins, David W</au><au>Fennessey, Neil M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regional regression models for hydro‐climate change impact assessment</atitle><jtitle>Hydrological processes</jtitle><addtitle>Hydrol. Process</addtitle><date>2015-04-15</date><risdate>2015</risdate><volume>29</volume><issue>8</issue><spage>1972</spage><epage>1985</epage><pages>1972-1985</pages><issn>0885-6087</issn><eissn>1099-1085</eissn><abstract>Hydro‐climatic impacts in water resources systems are typically assessed by forcing a hydrologic model with outputs from general circulation models (GCMs) or regional climate models. The challenges of this approach include maintaining a consistent energy budget between climate and hydrologic models and also properly calibrating and verifying the hydrologic models. Subjective choices of loss, flow routing, snowmelt and evapotranspiration computation methods also increase watershed modelling uncertainty and thus complicate impact assessment. An alternative approach, particularly appealing for ungauged basins or locations where record lengths are short, is to predict selected streamflow quantiles directly from meteorological variable output from climate models using regional regression models that also include physical basin characteristics. In this study, regional regression models are developed for the western Great Lakes states using ordinary least squares and weighted least squares techniques applied to selected Great Lakes watersheds. Model inputs include readily available downscaled GCM outputs from the Coupled Model Intercomparison Project Phase 3. The model results provide insights to potential model weaknesses, including comparatively low runoff predictions from continuous simulation models that estimate potential evapotranspiration using temperature proxy information and comparatively high runoff projections from regression models that do not include temperature as an explanatory variable. Copyright © 2014 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester</cop><pub>Wiley</pub><doi>10.1002/hyp.10312</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-6087
ispartof Hydrological processes, 2015-04, Vol.29 (8), p.1972-1985
issn 0885-6087
1099-1085
language eng
recordid cdi_proquest_journals_1673829237
source Wiley Journals
subjects basins
climate
climate change
energy
evapotranspiration
General Circulation Models
Great Lakes basin
hydro-climatic framework
hydrologic models
least squares
PET
prediction
regional regression models
runoff
simulation models
snowmelt
stream flow
temperature
uncertainty
water resources
watersheds
title Regional regression models for hydro‐climate change impact assessment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regional%20regression%20models%20for%20hydro%E2%80%90climate%20change%20impact%20assessment&rft.jtitle=Hydrological%20processes&rft.au=Gyawali,%20Rabi&rft.date=2015-04-15&rft.volume=29&rft.issue=8&rft.spage=1972&rft.epage=1985&rft.pages=1972-1985&rft.issn=0885-6087&rft.eissn=1099-1085&rft_id=info:doi/10.1002/hyp.10312&rft_dat=%3Cproquest_cross%3E3657317371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673829237&rft_id=info:pmid/&rfr_iscdi=true