Regional regression models for hydro‐climate change impact assessment
Hydro‐climatic impacts in water resources systems are typically assessed by forcing a hydrologic model with outputs from general circulation models (GCMs) or regional climate models. The challenges of this approach include maintaining a consistent energy budget between climate and hydrologic models...
Gespeichert in:
Veröffentlicht in: | Hydrological processes 2015-04, Vol.29 (8), p.1972-1985 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1985 |
---|---|
container_issue | 8 |
container_start_page | 1972 |
container_title | Hydrological processes |
container_volume | 29 |
creator | Gyawali, Rabi Griffis, Veronica W Watkins, David W Fennessey, Neil M |
description | Hydro‐climatic impacts in water resources systems are typically assessed by forcing a hydrologic model with outputs from general circulation models (GCMs) or regional climate models. The challenges of this approach include maintaining a consistent energy budget between climate and hydrologic models and also properly calibrating and verifying the hydrologic models. Subjective choices of loss, flow routing, snowmelt and evapotranspiration computation methods also increase watershed modelling uncertainty and thus complicate impact assessment. An alternative approach, particularly appealing for ungauged basins or locations where record lengths are short, is to predict selected streamflow quantiles directly from meteorological variable output from climate models using regional regression models that also include physical basin characteristics. In this study, regional regression models are developed for the western Great Lakes states using ordinary least squares and weighted least squares techniques applied to selected Great Lakes watersheds. Model inputs include readily available downscaled GCM outputs from the Coupled Model Intercomparison Project Phase 3. The model results provide insights to potential model weaknesses, including comparatively low runoff predictions from continuous simulation models that estimate potential evapotranspiration using temperature proxy information and comparatively high runoff projections from regression models that do not include temperature as an explanatory variable. Copyright © 2014 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/hyp.10312 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1673829237</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3657317371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3592-4976a9ff2fa5c869dcd3cff4f498308769062649bbb336f47765bcec315d87e13</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqWw4AuIxIpFqB-xYy9RRVukCsqjIFaW69htStoEOxVkxyfwjXwJhgA7VjMjnTO6ugAcIniKIMS9RVOFhSC8BToIChEjyOk26EDOacwgT3fBnvdLCGECOeyA4Y2Z5-VaFZEzc2e8D0e0KjNT-MiWLlo0mSs_3t51ka9UbSK9UOu5ifJVpXQdKe-DsjLreh_sWFV4c_Azu2A6OL_rj-Lx1fCifzaONaECx4lImRLWYquo5kxkOiPa2sQmgpOQjgnIMEvEbDYjhNkkTRmdaaMJohlPDSJdcNz-rVz5vDG-lsty40J-LxFLCccCkzRQJy2lXem9M1ZWLuR3jURQfvUkQ0_yu6fA9lr2JS9M8z8oR4-TXyNujdzX5vXPUO5JhggplQ-XQ9kf3Fzf0_5ETgJ_1PJWlVLNXe7l9BZDRMN_SElCySfTvILp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673829237</pqid></control><display><type>article</type><title>Regional regression models for hydro‐climate change impact assessment</title><source>Wiley Journals</source><creator>Gyawali, Rabi ; Griffis, Veronica W ; Watkins, David W ; Fennessey, Neil M</creator><creatorcontrib>Gyawali, Rabi ; Griffis, Veronica W ; Watkins, David W ; Fennessey, Neil M</creatorcontrib><description>Hydro‐climatic impacts in water resources systems are typically assessed by forcing a hydrologic model with outputs from general circulation models (GCMs) or regional climate models. The challenges of this approach include maintaining a consistent energy budget between climate and hydrologic models and also properly calibrating and verifying the hydrologic models. Subjective choices of loss, flow routing, snowmelt and evapotranspiration computation methods also increase watershed modelling uncertainty and thus complicate impact assessment. An alternative approach, particularly appealing for ungauged basins or locations where record lengths are short, is to predict selected streamflow quantiles directly from meteorological variable output from climate models using regional regression models that also include physical basin characteristics. In this study, regional regression models are developed for the western Great Lakes states using ordinary least squares and weighted least squares techniques applied to selected Great Lakes watersheds. Model inputs include readily available downscaled GCM outputs from the Coupled Model Intercomparison Project Phase 3. The model results provide insights to potential model weaknesses, including comparatively low runoff predictions from continuous simulation models that estimate potential evapotranspiration using temperature proxy information and comparatively high runoff projections from regression models that do not include temperature as an explanatory variable. Copyright © 2014 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0885-6087</identifier><identifier>EISSN: 1099-1085</identifier><identifier>DOI: 10.1002/hyp.10312</identifier><language>eng</language><publisher>Chichester: Wiley</publisher><subject>basins ; climate ; climate change ; energy ; evapotranspiration ; General Circulation Models ; Great Lakes basin ; hydro-climatic framework ; hydrologic models ; least squares ; PET ; prediction ; regional regression models ; runoff ; simulation models ; snowmelt ; stream flow ; temperature ; uncertainty ; water resources ; watersheds</subject><ispartof>Hydrological processes, 2015-04, Vol.29 (8), p.1972-1985</ispartof><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3592-4976a9ff2fa5c869dcd3cff4f498308769062649bbb336f47765bcec315d87e13</citedby><cites>FETCH-LOGICAL-c3592-4976a9ff2fa5c869dcd3cff4f498308769062649bbb336f47765bcec315d87e13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fhyp.10312$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fhyp.10312$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Gyawali, Rabi</creatorcontrib><creatorcontrib>Griffis, Veronica W</creatorcontrib><creatorcontrib>Watkins, David W</creatorcontrib><creatorcontrib>Fennessey, Neil M</creatorcontrib><title>Regional regression models for hydro‐climate change impact assessment</title><title>Hydrological processes</title><addtitle>Hydrol. Process</addtitle><description>Hydro‐climatic impacts in water resources systems are typically assessed by forcing a hydrologic model with outputs from general circulation models (GCMs) or regional climate models. The challenges of this approach include maintaining a consistent energy budget between climate and hydrologic models and also properly calibrating and verifying the hydrologic models. Subjective choices of loss, flow routing, snowmelt and evapotranspiration computation methods also increase watershed modelling uncertainty and thus complicate impact assessment. An alternative approach, particularly appealing for ungauged basins or locations where record lengths are short, is to predict selected streamflow quantiles directly from meteorological variable output from climate models using regional regression models that also include physical basin characteristics. In this study, regional regression models are developed for the western Great Lakes states using ordinary least squares and weighted least squares techniques applied to selected Great Lakes watersheds. Model inputs include readily available downscaled GCM outputs from the Coupled Model Intercomparison Project Phase 3. The model results provide insights to potential model weaknesses, including comparatively low runoff predictions from continuous simulation models that estimate potential evapotranspiration using temperature proxy information and comparatively high runoff projections from regression models that do not include temperature as an explanatory variable. Copyright © 2014 John Wiley & Sons, Ltd.</description><subject>basins</subject><subject>climate</subject><subject>climate change</subject><subject>energy</subject><subject>evapotranspiration</subject><subject>General Circulation Models</subject><subject>Great Lakes basin</subject><subject>hydro-climatic framework</subject><subject>hydrologic models</subject><subject>least squares</subject><subject>PET</subject><subject>prediction</subject><subject>regional regression models</subject><subject>runoff</subject><subject>simulation models</subject><subject>snowmelt</subject><subject>stream flow</subject><subject>temperature</subject><subject>uncertainty</subject><subject>water resources</subject><subject>watersheds</subject><issn>0885-6087</issn><issn>1099-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqWw4AuIxIpFqB-xYy9RRVukCsqjIFaW69htStoEOxVkxyfwjXwJhgA7VjMjnTO6ugAcIniKIMS9RVOFhSC8BToIChEjyOk26EDOacwgT3fBnvdLCGECOeyA4Y2Z5-VaFZEzc2e8D0e0KjNT-MiWLlo0mSs_3t51ka9UbSK9UOu5ifJVpXQdKe-DsjLreh_sWFV4c_Azu2A6OL_rj-Lx1fCifzaONaECx4lImRLWYquo5kxkOiPa2sQmgpOQjgnIMEvEbDYjhNkkTRmdaaMJohlPDSJdcNz-rVz5vDG-lsty40J-LxFLCccCkzRQJy2lXem9M1ZWLuR3jURQfvUkQ0_yu6fA9lr2JS9M8z8oR4-TXyNujdzX5vXPUO5JhggplQ-XQ9kf3Fzf0_5ETgJ_1PJWlVLNXe7l9BZDRMN_SElCySfTvILp</recordid><startdate>20150415</startdate><enddate>20150415</enddate><creator>Gyawali, Rabi</creator><creator>Griffis, Veronica W</creator><creator>Watkins, David W</creator><creator>Fennessey, Neil M</creator><general>Wiley</general><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20150415</creationdate><title>Regional regression models for hydro‐climate change impact assessment</title><author>Gyawali, Rabi ; Griffis, Veronica W ; Watkins, David W ; Fennessey, Neil M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3592-4976a9ff2fa5c869dcd3cff4f498308769062649bbb336f47765bcec315d87e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>basins</topic><topic>climate</topic><topic>climate change</topic><topic>energy</topic><topic>evapotranspiration</topic><topic>General Circulation Models</topic><topic>Great Lakes basin</topic><topic>hydro-climatic framework</topic><topic>hydrologic models</topic><topic>least squares</topic><topic>PET</topic><topic>prediction</topic><topic>regional regression models</topic><topic>runoff</topic><topic>simulation models</topic><topic>snowmelt</topic><topic>stream flow</topic><topic>temperature</topic><topic>uncertainty</topic><topic>water resources</topic><topic>watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gyawali, Rabi</creatorcontrib><creatorcontrib>Griffis, Veronica W</creatorcontrib><creatorcontrib>Watkins, David W</creatorcontrib><creatorcontrib>Fennessey, Neil M</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Hydrological processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gyawali, Rabi</au><au>Griffis, Veronica W</au><au>Watkins, David W</au><au>Fennessey, Neil M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regional regression models for hydro‐climate change impact assessment</atitle><jtitle>Hydrological processes</jtitle><addtitle>Hydrol. Process</addtitle><date>2015-04-15</date><risdate>2015</risdate><volume>29</volume><issue>8</issue><spage>1972</spage><epage>1985</epage><pages>1972-1985</pages><issn>0885-6087</issn><eissn>1099-1085</eissn><abstract>Hydro‐climatic impacts in water resources systems are typically assessed by forcing a hydrologic model with outputs from general circulation models (GCMs) or regional climate models. The challenges of this approach include maintaining a consistent energy budget between climate and hydrologic models and also properly calibrating and verifying the hydrologic models. Subjective choices of loss, flow routing, snowmelt and evapotranspiration computation methods also increase watershed modelling uncertainty and thus complicate impact assessment. An alternative approach, particularly appealing for ungauged basins or locations where record lengths are short, is to predict selected streamflow quantiles directly from meteorological variable output from climate models using regional regression models that also include physical basin characteristics. In this study, regional regression models are developed for the western Great Lakes states using ordinary least squares and weighted least squares techniques applied to selected Great Lakes watersheds. Model inputs include readily available downscaled GCM outputs from the Coupled Model Intercomparison Project Phase 3. The model results provide insights to potential model weaknesses, including comparatively low runoff predictions from continuous simulation models that estimate potential evapotranspiration using temperature proxy information and comparatively high runoff projections from regression models that do not include temperature as an explanatory variable. Copyright © 2014 John Wiley & Sons, Ltd.</abstract><cop>Chichester</cop><pub>Wiley</pub><doi>10.1002/hyp.10312</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-6087 |
ispartof | Hydrological processes, 2015-04, Vol.29 (8), p.1972-1985 |
issn | 0885-6087 1099-1085 |
language | eng |
recordid | cdi_proquest_journals_1673829237 |
source | Wiley Journals |
subjects | basins climate climate change energy evapotranspiration General Circulation Models Great Lakes basin hydro-climatic framework hydrologic models least squares PET prediction regional regression models runoff simulation models snowmelt stream flow temperature uncertainty water resources watersheds |
title | Regional regression models for hydro‐climate change impact assessment |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T14%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regional%20regression%20models%20for%20hydro%E2%80%90climate%20change%20impact%20assessment&rft.jtitle=Hydrological%20processes&rft.au=Gyawali,%20Rabi&rft.date=2015-04-15&rft.volume=29&rft.issue=8&rft.spage=1972&rft.epage=1985&rft.pages=1972-1985&rft.issn=0885-6087&rft.eissn=1099-1085&rft_id=info:doi/10.1002/hyp.10312&rft_dat=%3Cproquest_cross%3E3657317371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673829237&rft_id=info:pmid/&rfr_iscdi=true |