EXISTENCE, ORTHOGONAL DECOMPOSITION AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF A SYSTEM IN ELECTROMAGNETISM
12251 In this paper we consider a system of Maxwell's equations, which models the propagation of electromagnetic waves in a boundedregion of R3. First we prove the existence and uniqueness of a solution of such a system using, for this, theory of Semigroupof linear operators. We obtain, then, t...
Gespeichert in:
Veröffentlicht in: | Ciência e natura 2014-01, Vol.36 (1), p.30 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | por |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 30 |
container_title | Ciência e natura |
container_volume | 36 |
creator | Graciele de Borba Gomes Arend Marcio Violante Ferreira |
description | 12251 In this paper we consider a system of Maxwell's equations, which models the propagation of electromagnetic waves in a boundedregion of R3. First we prove the existence and uniqueness of a solution of such a system using, for this, theory of Semigroupof linear operators. We obtain, then, the orthogonal decomposition of the electromagnetic field. Finally, using that orthogonaldecomposition and choosing an appropriate multiplier, we show that the total energy of the system decays exponentially to zero ast ! ¥. The method presented in this paper is quite different from those that appear in the literature related to this subject. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1673125460</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3654936191</sourcerecordid><originalsourceid>FETCH-proquest_journals_16731254603</originalsourceid><addsrcrecordid>eNqNjs0KwjAQhIMoWNR3WPBqIWm11WOMqw00WWmi6Kl4qIiIf9X3t4IP4FyGYT6GabEgEuksHCd812YBF5yH05inXTao6zNvlERJKuKAnXCnnUercARU-IxWZGUOC1Rk1uS012RB2gVItzdrT14rmGMmt5oKoCU4yjdfxn2DBLdvxgxoC5ij8gUZubLotTN91jkeLnU1-HmPDZfoVRben7fHu6pf5fn2fl6bqhRJGoto0pyP_6M-k4M_7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1673125460</pqid></control><display><type>article</type><title>EXISTENCE, ORTHOGONAL DECOMPOSITION AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF A SYSTEM IN ELECTROMAGNETISM</title><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Graciele de Borba Gomes Arend ; Marcio Violante Ferreira</creator><creatorcontrib>Graciele de Borba Gomes Arend ; Marcio Violante Ferreira</creatorcontrib><description>12251 In this paper we consider a system of Maxwell's equations, which models the propagation of electromagnetic waves in a boundedregion of R3. First we prove the existence and uniqueness of a solution of such a system using, for this, theory of Semigroupof linear operators. We obtain, then, the orthogonal decomposition of the electromagnetic field. Finally, using that orthogonaldecomposition and choosing an appropriate multiplier, we show that the total energy of the system decays exponentially to zero ast ! ¥. The method presented in this paper is quite different from those that appear in the literature related to this subject.</description><identifier>ISSN: 0100-8307</identifier><identifier>EISSN: 2179-460X</identifier><language>por</language><publisher>Santa Maria: Universidade Federal de Santa Maria - Centro de Ciências Naturais e Exatas</publisher><ispartof>Ciência e natura, 2014-01, Vol.36 (1), p.30</ispartof><rights>Copyright Universidade Federal de Santa Maria - Centro de Ciências Naturais e Exatas 2014</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Graciele de Borba Gomes Arend</creatorcontrib><creatorcontrib>Marcio Violante Ferreira</creatorcontrib><title>EXISTENCE, ORTHOGONAL DECOMPOSITION AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF A SYSTEM IN ELECTROMAGNETISM</title><title>Ciência e natura</title><description>12251 In this paper we consider a system of Maxwell's equations, which models the propagation of electromagnetic waves in a boundedregion of R3. First we prove the existence and uniqueness of a solution of such a system using, for this, theory of Semigroupof linear operators. We obtain, then, the orthogonal decomposition of the electromagnetic field. Finally, using that orthogonaldecomposition and choosing an appropriate multiplier, we show that the total energy of the system decays exponentially to zero ast ! ¥. The method presented in this paper is quite different from those that appear in the literature related to this subject.</description><issn>0100-8307</issn><issn>2179-460X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNjs0KwjAQhIMoWNR3WPBqIWm11WOMqw00WWmi6Kl4qIiIf9X3t4IP4FyGYT6GabEgEuksHCd812YBF5yH05inXTao6zNvlERJKuKAnXCnnUercARU-IxWZGUOC1Rk1uS012RB2gVItzdrT14rmGMmt5oKoCU4yjdfxn2DBLdvxgxoC5ij8gUZubLotTN91jkeLnU1-HmPDZfoVRben7fHu6pf5fn2fl6bqhRJGoto0pyP_6M-k4M_7w</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Graciele de Borba Gomes Arend</creator><creator>Marcio Violante Ferreira</creator><general>Universidade Federal de Santa Maria - Centro de Ciências Naturais e Exatas</general><scope>3V.</scope><scope>7X2</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>CLZPN</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope></search><sort><creationdate>20140101</creationdate><title>EXISTENCE, ORTHOGONAL DECOMPOSITION AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF A SYSTEM IN ELECTROMAGNETISM</title><author>Graciele de Borba Gomes Arend ; Marcio Violante Ferreira</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_16731254603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>por</language><creationdate>2014</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Graciele de Borba Gomes Arend</creatorcontrib><creatorcontrib>Marcio Violante Ferreira</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>Latin America & Iberia Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><jtitle>Ciência e natura</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Graciele de Borba Gomes Arend</au><au>Marcio Violante Ferreira</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EXISTENCE, ORTHOGONAL DECOMPOSITION AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF A SYSTEM IN ELECTROMAGNETISM</atitle><jtitle>Ciência e natura</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>36</volume><issue>1</issue><spage>30</spage><pages>30-</pages><issn>0100-8307</issn><eissn>2179-460X</eissn><abstract>12251 In this paper we consider a system of Maxwell's equations, which models the propagation of electromagnetic waves in a boundedregion of R3. First we prove the existence and uniqueness of a solution of such a system using, for this, theory of Semigroupof linear operators. We obtain, then, the orthogonal decomposition of the electromagnetic field. Finally, using that orthogonaldecomposition and choosing an appropriate multiplier, we show that the total energy of the system decays exponentially to zero ast ! ¥. The method presented in this paper is quite different from those that appear in the literature related to this subject.</abstract><cop>Santa Maria</cop><pub>Universidade Federal de Santa Maria - Centro de Ciências Naturais e Exatas</pub></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0100-8307 |
ispartof | Ciência e natura, 2014-01, Vol.36 (1), p.30 |
issn | 0100-8307 2179-460X |
language | por |
recordid | cdi_proquest_journals_1673125460 |
source | Alma/SFX Local Collection; EZB Electronic Journals Library |
title | EXISTENCE, ORTHOGONAL DECOMPOSITION AND ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF A SYSTEM IN ELECTROMAGNETISM |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T15%3A01%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EXISTENCE,%20ORTHOGONAL%20DECOMPOSITION%20AND%20ASYMPTOTIC%20BEHAVIOR%20OF%20SOLUTIONS%20OF%20A%20SYSTEM%20IN%20ELECTROMAGNETISM&rft.jtitle=Ci%C3%AAncia%20e%20natura&rft.au=Graciele%20de%20Borba%20Gomes%20Arend&rft.date=2014-01-01&rft.volume=36&rft.issue=1&rft.spage=30&rft.pages=30-&rft.issn=0100-8307&rft.eissn=2179-460X&rft_id=info:doi/&rft_dat=%3Cproquest%3E3654936191%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1673125460&rft_id=info:pmid/&rfr_iscdi=true |