A strict topology on Orlicz spaces

Let φ be a Young function, Ω be a locally compact space, and μ be a positive Radon measure on Ω. We consider a strict topology βφ (in the sense of Sentilles‐Taylor) on the Orlicz function space Mφ(Ω) and investigate various properties of this locally convex topology. We also study the Orlicz space M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2015-04, Vol.288 (5-6), p.498-508
Hauptverfasser: Akbarbaglu, I., Maghsoudi, S., Seoane-Sepúlveda, J. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 508
container_issue 5-6
container_start_page 498
container_title Mathematische Nachrichten
container_volume 288
creator Akbarbaglu, I.
Maghsoudi, S.
Seoane-Sepúlveda, J. B.
description Let φ be a Young function, Ω be a locally compact space, and μ be a positive Radon measure on Ω. We consider a strict topology βφ (in the sense of Sentilles‐Taylor) on the Orlicz function space Mφ(Ω) and investigate various properties of this locally convex topology. We also study the Orlicz space Mφ(G) of a locally compact group G with a left Haar measure under the strict topology βφ and certain other natural locally convex topologies. Finally we present some results on various continuity properties of convolution operators on Mφ(G) under the βφ topology and other natural ones.
doi_str_mv 10.1002/mana.201400100
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1672808501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3653363111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3550-3b36c18bf3be4b5070b77b00fdc7940bd1e24cc2667985b79a60131a6ade16053</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIMoOKdXz0XPnS9Jk7THMnQK-wUq2y0kWSqd3VKTDp1_vR2V4c3T48H3vQcfQtcYBhiA3G3UVg0I4ASg3U9QDzNCYsIxP0W9FmAxS5PlOboIYQ0AWSZ4D93kUWh8aZqocbWr3Ns-ctto5qvSfEehVsaGS3RWqCrYq9_ZR68P9y_Dx3g8Gz0N83FsKGMQU025wakuqLaJZiBAC6EBipURWQJ6hS1JjCGciyxlWmSKA6ZYcbWymAOjfXTb3a29-9jZ0Mi12_lt-1JiLkgKKWuFPhp0lPEuBG8LWftyo_xeYpCHDvLQQR47tELWCZ9lZff_0HKST_O_bty5ZWjs19FV_l1yQQWTi-lIzpfP8wmZLuSS_gCAXW5s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672808501</pqid></control><display><type>article</type><title>A strict topology on Orlicz spaces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Akbarbaglu, I. ; Maghsoudi, S. ; Seoane-Sepúlveda, J. B.</creator><creatorcontrib>Akbarbaglu, I. ; Maghsoudi, S. ; Seoane-Sepúlveda, J. B.</creatorcontrib><description>Let φ be a Young function, Ω be a locally compact space, and μ be a positive Radon measure on Ω. We consider a strict topology βφ (in the sense of Sentilles‐Taylor) on the Orlicz function space Mφ(Ω) and investigate various properties of this locally convex topology. We also study the Orlicz space Mφ(G) of a locally compact group G with a left Haar measure under the strict topology βφ and certain other natural locally convex topologies. Finally we present some results on various continuity properties of convolution operators on Mφ(G) under the βφ topology and other natural ones.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201400100</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>43A15 ; 43A15; Secondary: 46A03 ; 46A70 ; 46H05 ; convolution ; locally compact group ; Orlicz space ; Primary: 46E30 ; Secondary: 46A03 ; strict topology ; Young function</subject><ispartof>Mathematische Nachrichten, 2015-04, Vol.288 (5-6), p.498-508</ispartof><rights>2014 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3550-3b36c18bf3be4b5070b77b00fdc7940bd1e24cc2667985b79a60131a6ade16053</citedby><cites>FETCH-LOGICAL-c3550-3b36c18bf3be4b5070b77b00fdc7940bd1e24cc2667985b79a60131a6ade16053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.201400100$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.201400100$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Akbarbaglu, I.</creatorcontrib><creatorcontrib>Maghsoudi, S.</creatorcontrib><creatorcontrib>Seoane-Sepúlveda, J. B.</creatorcontrib><title>A strict topology on Orlicz spaces</title><title>Mathematische Nachrichten</title><addtitle>Math. Nachr</addtitle><description>Let φ be a Young function, Ω be a locally compact space, and μ be a positive Radon measure on Ω. We consider a strict topology βφ (in the sense of Sentilles‐Taylor) on the Orlicz function space Mφ(Ω) and investigate various properties of this locally convex topology. We also study the Orlicz space Mφ(G) of a locally compact group G with a left Haar measure under the strict topology βφ and certain other natural locally convex topologies. Finally we present some results on various continuity properties of convolution operators on Mφ(G) under the βφ topology and other natural ones.</description><subject>43A15</subject><subject>43A15; Secondary: 46A03</subject><subject>46A70</subject><subject>46H05</subject><subject>convolution</subject><subject>locally compact group</subject><subject>Orlicz space</subject><subject>Primary: 46E30</subject><subject>Secondary: 46A03</subject><subject>strict topology</subject><subject>Young function</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUgIMoOKdXz0XPnS9Jk7THMnQK-wUq2y0kWSqd3VKTDp1_vR2V4c3T48H3vQcfQtcYBhiA3G3UVg0I4ASg3U9QDzNCYsIxP0W9FmAxS5PlOboIYQ0AWSZ4D93kUWh8aZqocbWr3Ns-ctto5qvSfEehVsaGS3RWqCrYq9_ZR68P9y_Dx3g8Gz0N83FsKGMQU025wakuqLaJZiBAC6EBipURWQJ6hS1JjCGciyxlWmSKA6ZYcbWymAOjfXTb3a29-9jZ0Mi12_lt-1JiLkgKKWuFPhp0lPEuBG8LWftyo_xeYpCHDvLQQR47tELWCZ9lZff_0HKST_O_bty5ZWjs19FV_l1yQQWTi-lIzpfP8wmZLuSS_gCAXW5s</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Akbarbaglu, I.</creator><creator>Maghsoudi, S.</creator><creator>Seoane-Sepúlveda, J. B.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201504</creationdate><title>A strict topology on Orlicz spaces</title><author>Akbarbaglu, I. ; Maghsoudi, S. ; Seoane-Sepúlveda, J. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3550-3b36c18bf3be4b5070b77b00fdc7940bd1e24cc2667985b79a60131a6ade16053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>43A15</topic><topic>43A15; Secondary: 46A03</topic><topic>46A70</topic><topic>46H05</topic><topic>convolution</topic><topic>locally compact group</topic><topic>Orlicz space</topic><topic>Primary: 46E30</topic><topic>Secondary: 46A03</topic><topic>strict topology</topic><topic>Young function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbarbaglu, I.</creatorcontrib><creatorcontrib>Maghsoudi, S.</creatorcontrib><creatorcontrib>Seoane-Sepúlveda, J. B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbarbaglu, I.</au><au>Maghsoudi, S.</au><au>Seoane-Sepúlveda, J. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A strict topology on Orlicz spaces</atitle><jtitle>Mathematische Nachrichten</jtitle><addtitle>Math. Nachr</addtitle><date>2015-04</date><risdate>2015</risdate><volume>288</volume><issue>5-6</issue><spage>498</spage><epage>508</epage><pages>498-508</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>Let φ be a Young function, Ω be a locally compact space, and μ be a positive Radon measure on Ω. We consider a strict topology βφ (in the sense of Sentilles‐Taylor) on the Orlicz function space Mφ(Ω) and investigate various properties of this locally convex topology. We also study the Orlicz space Mφ(G) of a locally compact group G with a left Haar measure under the strict topology βφ and certain other natural locally convex topologies. Finally we present some results on various continuity properties of convolution operators on Mφ(G) under the βφ topology and other natural ones.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/mana.201400100</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-584X
ispartof Mathematische Nachrichten, 2015-04, Vol.288 (5-6), p.498-508
issn 0025-584X
1522-2616
language eng
recordid cdi_proquest_journals_1672808501
source Wiley Online Library Journals Frontfile Complete
subjects 43A15
43A15
Secondary: 46A03
46A70
46H05
convolution
locally compact group
Orlicz space
Primary: 46E30
Secondary: 46A03
strict topology
Young function
title A strict topology on Orlicz spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20strict%20topology%20on%20Orlicz%20spaces&rft.jtitle=Mathematische%20Nachrichten&rft.au=Akbarbaglu,%20I.&rft.date=2015-04&rft.volume=288&rft.issue=5-6&rft.spage=498&rft.epage=508&rft.pages=498-508&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201400100&rft_dat=%3Cproquest_cross%3E3653363111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672808501&rft_id=info:pmid/&rfr_iscdi=true