A strict topology on Orlicz spaces
Let φ be a Young function, Ω be a locally compact space, and μ be a positive Radon measure on Ω. We consider a strict topology βφ (in the sense of Sentilles‐Taylor) on the Orlicz function space Mφ(Ω) and investigate various properties of this locally convex topology. We also study the Orlicz space M...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2015-04, Vol.288 (5-6), p.498-508 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 508 |
---|---|
container_issue | 5-6 |
container_start_page | 498 |
container_title | Mathematische Nachrichten |
container_volume | 288 |
creator | Akbarbaglu, I. Maghsoudi, S. Seoane-Sepúlveda, J. B. |
description | Let φ be a Young function, Ω be a locally compact space, and μ be a positive Radon measure on Ω. We consider a strict topology βφ (in the sense of Sentilles‐Taylor) on the Orlicz function space Mφ(Ω) and investigate various properties of this locally convex topology. We also study the Orlicz space Mφ(G) of a locally compact group G with a left Haar measure under the strict topology βφ and certain other natural locally convex topologies. Finally we present some results on various continuity properties of convolution operators on Mφ(G) under the βφ topology and other natural ones. |
doi_str_mv | 10.1002/mana.201400100 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1672808501</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3653363111</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3550-3b36c18bf3be4b5070b77b00fdc7940bd1e24cc2667985b79a60131a6ade16053</originalsourceid><addsrcrecordid>eNqFkM9LwzAUgIMoOKdXz0XPnS9Jk7THMnQK-wUq2y0kWSqd3VKTDp1_vR2V4c3T48H3vQcfQtcYBhiA3G3UVg0I4ASg3U9QDzNCYsIxP0W9FmAxS5PlOboIYQ0AWSZ4D93kUWh8aZqocbWr3Ns-ctto5qvSfEehVsaGS3RWqCrYq9_ZR68P9y_Dx3g8Gz0N83FsKGMQU025wakuqLaJZiBAC6EBipURWQJ6hS1JjCGciyxlWmSKA6ZYcbWymAOjfXTb3a29-9jZ0Mi12_lt-1JiLkgKKWuFPhp0lPEuBG8LWftyo_xeYpCHDvLQQR47tELWCZ9lZff_0HKST_O_bty5ZWjs19FV_l1yQQWTi-lIzpfP8wmZLuSS_gCAXW5s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672808501</pqid></control><display><type>article</type><title>A strict topology on Orlicz spaces</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Akbarbaglu, I. ; Maghsoudi, S. ; Seoane-Sepúlveda, J. B.</creator><creatorcontrib>Akbarbaglu, I. ; Maghsoudi, S. ; Seoane-Sepúlveda, J. B.</creatorcontrib><description>Let φ be a Young function, Ω be a locally compact space, and μ be a positive Radon measure on Ω. We consider a strict topology βφ (in the sense of Sentilles‐Taylor) on the Orlicz function space Mφ(Ω) and investigate various properties of this locally convex topology. We also study the Orlicz space Mφ(G) of a locally compact group G with a left Haar measure under the strict topology βφ and certain other natural locally convex topologies. Finally we present some results on various continuity properties of convolution operators on Mφ(G) under the βφ topology and other natural ones.</description><identifier>ISSN: 0025-584X</identifier><identifier>EISSN: 1522-2616</identifier><identifier>DOI: 10.1002/mana.201400100</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>43A15 ; 43A15; Secondary: 46A03 ; 46A70 ; 46H05 ; convolution ; locally compact group ; Orlicz space ; Primary: 46E30 ; Secondary: 46A03 ; strict topology ; Young function</subject><ispartof>Mathematische Nachrichten, 2015-04, Vol.288 (5-6), p.498-508</ispartof><rights>2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3550-3b36c18bf3be4b5070b77b00fdc7940bd1e24cc2667985b79a60131a6ade16053</citedby><cites>FETCH-LOGICAL-c3550-3b36c18bf3be4b5070b77b00fdc7940bd1e24cc2667985b79a60131a6ade16053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmana.201400100$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmana.201400100$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,27907,27908,45557,45558</link.rule.ids></links><search><creatorcontrib>Akbarbaglu, I.</creatorcontrib><creatorcontrib>Maghsoudi, S.</creatorcontrib><creatorcontrib>Seoane-Sepúlveda, J. B.</creatorcontrib><title>A strict topology on Orlicz spaces</title><title>Mathematische Nachrichten</title><addtitle>Math. Nachr</addtitle><description>Let φ be a Young function, Ω be a locally compact space, and μ be a positive Radon measure on Ω. We consider a strict topology βφ (in the sense of Sentilles‐Taylor) on the Orlicz function space Mφ(Ω) and investigate various properties of this locally convex topology. We also study the Orlicz space Mφ(G) of a locally compact group G with a left Haar measure under the strict topology βφ and certain other natural locally convex topologies. Finally we present some results on various continuity properties of convolution operators on Mφ(G) under the βφ topology and other natural ones.</description><subject>43A15</subject><subject>43A15; Secondary: 46A03</subject><subject>46A70</subject><subject>46H05</subject><subject>convolution</subject><subject>locally compact group</subject><subject>Orlicz space</subject><subject>Primary: 46E30</subject><subject>Secondary: 46A03</subject><subject>strict topology</subject><subject>Young function</subject><issn>0025-584X</issn><issn>1522-2616</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkM9LwzAUgIMoOKdXz0XPnS9Jk7THMnQK-wUq2y0kWSqd3VKTDp1_vR2V4c3T48H3vQcfQtcYBhiA3G3UVg0I4ASg3U9QDzNCYsIxP0W9FmAxS5PlOboIYQ0AWSZ4D93kUWh8aZqocbWr3Ns-ctto5qvSfEehVsaGS3RWqCrYq9_ZR68P9y_Dx3g8Gz0N83FsKGMQU025wakuqLaJZiBAC6EBipURWQJ6hS1JjCGciyxlWmSKA6ZYcbWymAOjfXTb3a29-9jZ0Mi12_lt-1JiLkgKKWuFPhp0lPEuBG8LWftyo_xeYpCHDvLQQR47tELWCZ9lZff_0HKST_O_bty5ZWjs19FV_l1yQQWTi-lIzpfP8wmZLuSS_gCAXW5s</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Akbarbaglu, I.</creator><creator>Maghsoudi, S.</creator><creator>Seoane-Sepúlveda, J. B.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>201504</creationdate><title>A strict topology on Orlicz spaces</title><author>Akbarbaglu, I. ; Maghsoudi, S. ; Seoane-Sepúlveda, J. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3550-3b36c18bf3be4b5070b77b00fdc7940bd1e24cc2667985b79a60131a6ade16053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>43A15</topic><topic>43A15; Secondary: 46A03</topic><topic>46A70</topic><topic>46H05</topic><topic>convolution</topic><topic>locally compact group</topic><topic>Orlicz space</topic><topic>Primary: 46E30</topic><topic>Secondary: 46A03</topic><topic>strict topology</topic><topic>Young function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Akbarbaglu, I.</creatorcontrib><creatorcontrib>Maghsoudi, S.</creatorcontrib><creatorcontrib>Seoane-Sepúlveda, J. B.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Mathematische Nachrichten</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Akbarbaglu, I.</au><au>Maghsoudi, S.</au><au>Seoane-Sepúlveda, J. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A strict topology on Orlicz spaces</atitle><jtitle>Mathematische Nachrichten</jtitle><addtitle>Math. Nachr</addtitle><date>2015-04</date><risdate>2015</risdate><volume>288</volume><issue>5-6</issue><spage>498</spage><epage>508</epage><pages>498-508</pages><issn>0025-584X</issn><eissn>1522-2616</eissn><abstract>Let φ be a Young function, Ω be a locally compact space, and μ be a positive Radon measure on Ω. We consider a strict topology βφ (in the sense of Sentilles‐Taylor) on the Orlicz function space Mφ(Ω) and investigate various properties of this locally convex topology. We also study the Orlicz space Mφ(G) of a locally compact group G with a left Haar measure under the strict topology βφ and certain other natural locally convex topologies. Finally we present some results on various continuity properties of convolution operators on Mφ(G) under the βφ topology and other natural ones.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/mana.201400100</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-584X |
ispartof | Mathematische Nachrichten, 2015-04, Vol.288 (5-6), p.498-508 |
issn | 0025-584X 1522-2616 |
language | eng |
recordid | cdi_proquest_journals_1672808501 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 43A15 43A15 Secondary: 46A03 46A70 46H05 convolution locally compact group Orlicz space Primary: 46E30 Secondary: 46A03 strict topology Young function |
title | A strict topology on Orlicz spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A16%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20strict%20topology%20on%20Orlicz%20spaces&rft.jtitle=Mathematische%20Nachrichten&rft.au=Akbarbaglu,%20I.&rft.date=2015-04&rft.volume=288&rft.issue=5-6&rft.spage=498&rft.epage=508&rft.pages=498-508&rft.issn=0025-584X&rft.eissn=1522-2616&rft_id=info:doi/10.1002/mana.201400100&rft_dat=%3Cproquest_cross%3E3653363111%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672808501&rft_id=info:pmid/&rfr_iscdi=true |