Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana

The "mustard oil bomb" is a major defense mechanism in the Brassicaceae, which includes crops such as canola and the model plant Arabidopsis thaliana. These plants produce and store blends of amino acid-derived secondary metabolites called glucosinolates. Upon tissue rupture by natural ene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2015-03, Vol.112 (13), p.4032-4037
Hauptverfasser: Brachi, Benjamin, Meyer, Christopher G, Villoutreix, Romain, Platt, Alexander, Morton, Timothy C, Roux, Fabrice, Bergelson, Joy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4037
container_issue 13
container_start_page 4032
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Brachi, Benjamin
Meyer, Christopher G
Villoutreix, Romain
Platt, Alexander
Morton, Timothy C
Roux, Fabrice
Bergelson, Joy
description The "mustard oil bomb" is a major defense mechanism in the Brassicaceae, which includes crops such as canola and the model plant Arabidopsis thaliana. These plants produce and store blends of amino acid-derived secondary metabolites called glucosinolates. Upon tissue rupture by natural enemies, the myrosinase enzyme hydrolyses glucosinolates, releasing defense molecules. Brassicaceae display extensive variation in the mixture of glucosinolates that they produce. To investigate the genetics underlying natural variation in glucosinolate profiles, we conducted a large genome-wide association study of 22 methionine-derived glucosinolates using A. thaliana accessions from across Europe. We found that 36% of among accession variation in overall glucosinolate profile was explained by genetic differentiation at only three known loci from the glucosinolate pathway. Glucosinolate-related SNPs were up to 490-fold enriched in the extreme tail of the genome-wide [Formula: see text] scan, indicating strong selection on loci controlling this pathway. Glucosinolate profiles displayed a striking longitudinal gradient with alkenyl and hydroxyalkenyl glucosinolates enriched in the West. We detected a significant contribution of glucosinolate loci toward general herbivore resistance and lifetime fitness in common garden experiments conducted in France, where accessions are enriched in hydroxyalkenyls. In addition to demonstrating the adaptive value of glucosinolate profile variation, we also detected long-distance linkage disequilibrium at two underlying loci, GS-OH and GS-ELONG. Locally cooccurring alleles at these loci display epistatic effects on herbivore resistance and fitness in ecologically realistic conditions. Together, our results suggest that natural selection has favored a locally adaptive configuration of physically unlinked loci in Western Europe.
doi_str_mv 10.1073/pnas.1421416112
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_1672168926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1803141487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-5d532cf1a8d0f653e71ef98b702170701a117686eb70809a738404d98d6ba30b3</originalsourceid><addsrcrecordid>eNqNks2P0zAQxSMEYsvCmRtY4gKH7nr8nQtSVQGLtBIXOFtOMmm9Su1iJ5X2v8ehpcBe4GRr5vfeyONXVS-BXgHV_HofXL4CwUCAAmCPqgXQGpZK1PRxtaCU6aURTFxUz3K-o5TW0tCn1QWTWktp5KK6X8eMA7YjdmSDATPpcMS08wGJ69x-9AckB5e8G30MxAeyxdT4Q0xIEmafRxdaJOM2xWmzjdNYrkiC-6lLLmyQxJ6skmt8F_eFL303eBfc8-pJ74aML07nZfXt44ev65vl7ZdPn9er22UrhRyXspOctT0409FeSY4asK9NoykDTTUFB6CVUVgqhtZOcyOo6GrTqcZx2vDL6v3Rdz81O-xaDGNyg90nv3Pp3kbn7d-d4Ld2Ew9WcKO4pMXg3dFg-0B2s7q1c40CcFFWfYDCvj0NS_H7hHm0O59bHAYXME7ZgqG8_JUw-t-o0oorEJL9B6pqIalWqqBvHqB3cUqhLHg2ZKBMzWbq-ki1KeacsD-_C6idg2XnYNnfwSqKV39u8cz_SlIBXp-AWXm2A2aBW0E54z8AgkfTvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672168926</pqid></control><display><type>article</type><title>Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Brachi, Benjamin ; Meyer, Christopher G ; Villoutreix, Romain ; Platt, Alexander ; Morton, Timothy C ; Roux, Fabrice ; Bergelson, Joy</creator><creatorcontrib>Brachi, Benjamin ; Meyer, Christopher G ; Villoutreix, Romain ; Platt, Alexander ; Morton, Timothy C ; Roux, Fabrice ; Bergelson, Joy</creatorcontrib><description>The "mustard oil bomb" is a major defense mechanism in the Brassicaceae, which includes crops such as canola and the model plant Arabidopsis thaliana. These plants produce and store blends of amino acid-derived secondary metabolites called glucosinolates. Upon tissue rupture by natural enemies, the myrosinase enzyme hydrolyses glucosinolates, releasing defense molecules. Brassicaceae display extensive variation in the mixture of glucosinolates that they produce. To investigate the genetics underlying natural variation in glucosinolate profiles, we conducted a large genome-wide association study of 22 methionine-derived glucosinolates using A. thaliana accessions from across Europe. We found that 36% of among accession variation in overall glucosinolate profile was explained by genetic differentiation at only three known loci from the glucosinolate pathway. Glucosinolate-related SNPs were up to 490-fold enriched in the extreme tail of the genome-wide [Formula: see text] scan, indicating strong selection on loci controlling this pathway. Glucosinolate profiles displayed a striking longitudinal gradient with alkenyl and hydroxyalkenyl glucosinolates enriched in the West. We detected a significant contribution of glucosinolate loci toward general herbivore resistance and lifetime fitness in common garden experiments conducted in France, where accessions are enriched in hydroxyalkenyls. In addition to demonstrating the adaptive value of glucosinolate profile variation, we also detected long-distance linkage disequilibrium at two underlying loci, GS-OH and GS-ELONG. Locally cooccurring alleles at these loci display epistatic effects on herbivore resistance and fitness in ecologically realistic conditions. Together, our results suggest that natural selection has favored a locally adaptive configuration of physically unlinked loci in Western Europe.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1421416112</identifier><identifier>PMID: 25775585</identifier><language>eng</language><publisher>United States: National Acad Sciences</publisher><subject>Alleles ; Animals ; Arabidopsis - chemistry ; Arabidopsis - genetics ; Arabidopsis thaliana ; Biodiversity ; Biological Sciences ; Brassicaceae ; Chromatography, Liquid ; chromosomes ; coevolution ; ecotypes ; epistasis ; Epistasis, Genetic ; Evolution, Molecular ; field experimentation ; Flowers &amp; plants ; Genes ; Genetics ; Genomes ; Genomics ; Genotype ; Geography ; glucosinolates ; Glucosinolates - chemistry ; herbivores ; Herbivory ; Insecta ; Life Sciences ; Linkage Disequilibrium ; mass spectrometry ; Metabolites ; Methionine - chemistry ; Molecules ; natural selection ; Polymorphism, Single Nucleotide ; Populations and Evolution ; Principal Component Analysis ; Quantitative Trait Loci ; Selection, Genetic ; Tandem Mass Spectrometry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-03, Vol.112 (13), p.4032-4037</ispartof><rights>Copyright National Academy of Sciences Mar 31, 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-5d532cf1a8d0f653e71ef98b702170701a117686eb70809a738404d98d6ba30b3</citedby><cites>FETCH-LOGICAL-c545t-5d532cf1a8d0f653e71ef98b702170701a117686eb70809a738404d98d6ba30b3</cites><orcidid>0000-0001-5988-7150 ; 0000-0001-8059-5638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/13.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386350/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386350/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25775585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01134027$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brachi, Benjamin</creatorcontrib><creatorcontrib>Meyer, Christopher G</creatorcontrib><creatorcontrib>Villoutreix, Romain</creatorcontrib><creatorcontrib>Platt, Alexander</creatorcontrib><creatorcontrib>Morton, Timothy C</creatorcontrib><creatorcontrib>Roux, Fabrice</creatorcontrib><creatorcontrib>Bergelson, Joy</creatorcontrib><title>Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The "mustard oil bomb" is a major defense mechanism in the Brassicaceae, which includes crops such as canola and the model plant Arabidopsis thaliana. These plants produce and store blends of amino acid-derived secondary metabolites called glucosinolates. Upon tissue rupture by natural enemies, the myrosinase enzyme hydrolyses glucosinolates, releasing defense molecules. Brassicaceae display extensive variation in the mixture of glucosinolates that they produce. To investigate the genetics underlying natural variation in glucosinolate profiles, we conducted a large genome-wide association study of 22 methionine-derived glucosinolates using A. thaliana accessions from across Europe. We found that 36% of among accession variation in overall glucosinolate profile was explained by genetic differentiation at only three known loci from the glucosinolate pathway. Glucosinolate-related SNPs were up to 490-fold enriched in the extreme tail of the genome-wide [Formula: see text] scan, indicating strong selection on loci controlling this pathway. Glucosinolate profiles displayed a striking longitudinal gradient with alkenyl and hydroxyalkenyl glucosinolates enriched in the West. We detected a significant contribution of glucosinolate loci toward general herbivore resistance and lifetime fitness in common garden experiments conducted in France, where accessions are enriched in hydroxyalkenyls. In addition to demonstrating the adaptive value of glucosinolate profile variation, we also detected long-distance linkage disequilibrium at two underlying loci, GS-OH and GS-ELONG. Locally cooccurring alleles at these loci display epistatic effects on herbivore resistance and fitness in ecologically realistic conditions. Together, our results suggest that natural selection has favored a locally adaptive configuration of physically unlinked loci in Western Europe.</description><subject>Alleles</subject><subject>Animals</subject><subject>Arabidopsis - chemistry</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Biodiversity</subject><subject>Biological Sciences</subject><subject>Brassicaceae</subject><subject>Chromatography, Liquid</subject><subject>chromosomes</subject><subject>coevolution</subject><subject>ecotypes</subject><subject>epistasis</subject><subject>Epistasis, Genetic</subject><subject>Evolution, Molecular</subject><subject>field experimentation</subject><subject>Flowers &amp; plants</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Geography</subject><subject>glucosinolates</subject><subject>Glucosinolates - chemistry</subject><subject>herbivores</subject><subject>Herbivory</subject><subject>Insecta</subject><subject>Life Sciences</subject><subject>Linkage Disequilibrium</subject><subject>mass spectrometry</subject><subject>Metabolites</subject><subject>Methionine - chemistry</subject><subject>Molecules</subject><subject>natural selection</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Populations and Evolution</subject><subject>Principal Component Analysis</subject><subject>Quantitative Trait Loci</subject><subject>Selection, Genetic</subject><subject>Tandem Mass Spectrometry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks2P0zAQxSMEYsvCmRtY4gKH7nr8nQtSVQGLtBIXOFtOMmm9Su1iJ5X2v8ehpcBe4GRr5vfeyONXVS-BXgHV_HofXL4CwUCAAmCPqgXQGpZK1PRxtaCU6aURTFxUz3K-o5TW0tCn1QWTWktp5KK6X8eMA7YjdmSDATPpcMS08wGJ69x-9AckB5e8G30MxAeyxdT4Q0xIEmafRxdaJOM2xWmzjdNYrkiC-6lLLmyQxJ6skmt8F_eFL303eBfc8-pJ74aML07nZfXt44ev65vl7ZdPn9er22UrhRyXspOctT0409FeSY4asK9NoykDTTUFB6CVUVgqhtZOcyOo6GrTqcZx2vDL6v3Rdz81O-xaDGNyg90nv3Pp3kbn7d-d4Ld2Ew9WcKO4pMXg3dFg-0B2s7q1c40CcFFWfYDCvj0NS_H7hHm0O59bHAYXME7ZgqG8_JUw-t-o0oorEJL9B6pqIalWqqBvHqB3cUqhLHg2ZKBMzWbq-ki1KeacsD-_C6idg2XnYNnfwSqKV39u8cz_SlIBXp-AWXm2A2aBW0E54z8AgkfTvA</recordid><startdate>20150331</startdate><enddate>20150331</enddate><creator>Brachi, Benjamin</creator><creator>Meyer, Christopher G</creator><creator>Villoutreix, Romain</creator><creator>Platt, Alexander</creator><creator>Morton, Timothy C</creator><creator>Roux, Fabrice</creator><creator>Bergelson, Joy</creator><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5988-7150</orcidid><orcidid>https://orcid.org/0000-0001-8059-5638</orcidid></search><sort><creationdate>20150331</creationdate><title>Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana</title><author>Brachi, Benjamin ; Meyer, Christopher G ; Villoutreix, Romain ; Platt, Alexander ; Morton, Timothy C ; Roux, Fabrice ; Bergelson, Joy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-5d532cf1a8d0f653e71ef98b702170701a117686eb70809a738404d98d6ba30b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Arabidopsis - chemistry</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Biodiversity</topic><topic>Biological Sciences</topic><topic>Brassicaceae</topic><topic>Chromatography, Liquid</topic><topic>chromosomes</topic><topic>coevolution</topic><topic>ecotypes</topic><topic>epistasis</topic><topic>Epistasis, Genetic</topic><topic>Evolution, Molecular</topic><topic>field experimentation</topic><topic>Flowers &amp; plants</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Geography</topic><topic>glucosinolates</topic><topic>Glucosinolates - chemistry</topic><topic>herbivores</topic><topic>Herbivory</topic><topic>Insecta</topic><topic>Life Sciences</topic><topic>Linkage Disequilibrium</topic><topic>mass spectrometry</topic><topic>Metabolites</topic><topic>Methionine - chemistry</topic><topic>Molecules</topic><topic>natural selection</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Populations and Evolution</topic><topic>Principal Component Analysis</topic><topic>Quantitative Trait Loci</topic><topic>Selection, Genetic</topic><topic>Tandem Mass Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brachi, Benjamin</creatorcontrib><creatorcontrib>Meyer, Christopher G</creatorcontrib><creatorcontrib>Villoutreix, Romain</creatorcontrib><creatorcontrib>Platt, Alexander</creatorcontrib><creatorcontrib>Morton, Timothy C</creatorcontrib><creatorcontrib>Roux, Fabrice</creatorcontrib><creatorcontrib>Bergelson, Joy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brachi, Benjamin</au><au>Meyer, Christopher G</au><au>Villoutreix, Romain</au><au>Platt, Alexander</au><au>Morton, Timothy C</au><au>Roux, Fabrice</au><au>Bergelson, Joy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-03-31</date><risdate>2015</risdate><volume>112</volume><issue>13</issue><spage>4032</spage><epage>4037</epage><pages>4032-4037</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The "mustard oil bomb" is a major defense mechanism in the Brassicaceae, which includes crops such as canola and the model plant Arabidopsis thaliana. These plants produce and store blends of amino acid-derived secondary metabolites called glucosinolates. Upon tissue rupture by natural enemies, the myrosinase enzyme hydrolyses glucosinolates, releasing defense molecules. Brassicaceae display extensive variation in the mixture of glucosinolates that they produce. To investigate the genetics underlying natural variation in glucosinolate profiles, we conducted a large genome-wide association study of 22 methionine-derived glucosinolates using A. thaliana accessions from across Europe. We found that 36% of among accession variation in overall glucosinolate profile was explained by genetic differentiation at only three known loci from the glucosinolate pathway. Glucosinolate-related SNPs were up to 490-fold enriched in the extreme tail of the genome-wide [Formula: see text] scan, indicating strong selection on loci controlling this pathway. Glucosinolate profiles displayed a striking longitudinal gradient with alkenyl and hydroxyalkenyl glucosinolates enriched in the West. We detected a significant contribution of glucosinolate loci toward general herbivore resistance and lifetime fitness in common garden experiments conducted in France, where accessions are enriched in hydroxyalkenyls. In addition to demonstrating the adaptive value of glucosinolate profile variation, we also detected long-distance linkage disequilibrium at two underlying loci, GS-OH and GS-ELONG. Locally cooccurring alleles at these loci display epistatic effects on herbivore resistance and fitness in ecologically realistic conditions. Together, our results suggest that natural selection has favored a locally adaptive configuration of physically unlinked loci in Western Europe.</abstract><cop>United States</cop><pub>National Acad Sciences</pub><pmid>25775585</pmid><doi>10.1073/pnas.1421416112</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5988-7150</orcidid><orcidid>https://orcid.org/0000-0001-8059-5638</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-03, Vol.112 (13), p.4032-4037
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1672168926
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Alleles
Animals
Arabidopsis - chemistry
Arabidopsis - genetics
Arabidopsis thaliana
Biodiversity
Biological Sciences
Brassicaceae
Chromatography, Liquid
chromosomes
coevolution
ecotypes
epistasis
Epistasis, Genetic
Evolution, Molecular
field experimentation
Flowers & plants
Genes
Genetics
Genomes
Genomics
Genotype
Geography
glucosinolates
Glucosinolates - chemistry
herbivores
Herbivory
Insecta
Life Sciences
Linkage Disequilibrium
mass spectrometry
Metabolites
Methionine - chemistry
Molecules
natural selection
Polymorphism, Single Nucleotide
Populations and Evolution
Principal Component Analysis
Quantitative Trait Loci
Selection, Genetic
Tandem Mass Spectrometry
title Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coselected%20genes%20determine%20adaptive%20variation%20in%20herbivore%20resistance%20throughout%20the%20native%20range%20of%20Arabidopsis%20thaliana&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Brachi,%20Benjamin&rft.date=2015-03-31&rft.volume=112&rft.issue=13&rft.spage=4032&rft.epage=4037&rft.pages=4032-4037&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1421416112&rft_dat=%3Cproquest_hal_p%3E1803141487%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672168926&rft_id=info:pmid/25775585&rfr_iscdi=true