Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana
The "mustard oil bomb" is a major defense mechanism in the Brassicaceae, which includes crops such as canola and the model plant Arabidopsis thaliana. These plants produce and store blends of amino acid-derived secondary metabolites called glucosinolates. Upon tissue rupture by natural ene...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2015-03, Vol.112 (13), p.4032-4037 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4037 |
---|---|
container_issue | 13 |
container_start_page | 4032 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Brachi, Benjamin Meyer, Christopher G Villoutreix, Romain Platt, Alexander Morton, Timothy C Roux, Fabrice Bergelson, Joy |
description | The "mustard oil bomb" is a major defense mechanism in the Brassicaceae, which includes crops such as canola and the model plant Arabidopsis thaliana. These plants produce and store blends of amino acid-derived secondary metabolites called glucosinolates. Upon tissue rupture by natural enemies, the myrosinase enzyme hydrolyses glucosinolates, releasing defense molecules. Brassicaceae display extensive variation in the mixture of glucosinolates that they produce. To investigate the genetics underlying natural variation in glucosinolate profiles, we conducted a large genome-wide association study of 22 methionine-derived glucosinolates using A. thaliana accessions from across Europe. We found that 36% of among accession variation in overall glucosinolate profile was explained by genetic differentiation at only three known loci from the glucosinolate pathway. Glucosinolate-related SNPs were up to 490-fold enriched in the extreme tail of the genome-wide [Formula: see text] scan, indicating strong selection on loci controlling this pathway. Glucosinolate profiles displayed a striking longitudinal gradient with alkenyl and hydroxyalkenyl glucosinolates enriched in the West. We detected a significant contribution of glucosinolate loci toward general herbivore resistance and lifetime fitness in common garden experiments conducted in France, where accessions are enriched in hydroxyalkenyls. In addition to demonstrating the adaptive value of glucosinolate profile variation, we also detected long-distance linkage disequilibrium at two underlying loci, GS-OH and GS-ELONG. Locally cooccurring alleles at these loci display epistatic effects on herbivore resistance and fitness in ecologically realistic conditions. Together, our results suggest that natural selection has favored a locally adaptive configuration of physically unlinked loci in Western Europe. |
doi_str_mv | 10.1073/pnas.1421416112 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_proquest_journals_1672168926</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1803141487</sourcerecordid><originalsourceid>FETCH-LOGICAL-c545t-5d532cf1a8d0f653e71ef98b702170701a117686eb70809a738404d98d6ba30b3</originalsourceid><addsrcrecordid>eNqNks2P0zAQxSMEYsvCmRtY4gKH7nr8nQtSVQGLtBIXOFtOMmm9Su1iJ5X2v8ehpcBe4GRr5vfeyONXVS-BXgHV_HofXL4CwUCAAmCPqgXQGpZK1PRxtaCU6aURTFxUz3K-o5TW0tCn1QWTWktp5KK6X8eMA7YjdmSDATPpcMS08wGJ69x-9AckB5e8G30MxAeyxdT4Q0xIEmafRxdaJOM2xWmzjdNYrkiC-6lLLmyQxJ6skmt8F_eFL303eBfc8-pJ74aML07nZfXt44ev65vl7ZdPn9er22UrhRyXspOctT0409FeSY4asK9NoykDTTUFB6CVUVgqhtZOcyOo6GrTqcZx2vDL6v3Rdz81O-xaDGNyg90nv3Pp3kbn7d-d4Ld2Ew9WcKO4pMXg3dFg-0B2s7q1c40CcFFWfYDCvj0NS_H7hHm0O59bHAYXME7ZgqG8_JUw-t-o0oorEJL9B6pqIalWqqBvHqB3cUqhLHg2ZKBMzWbq-ki1KeacsD-_C6idg2XnYNnfwSqKV39u8cz_SlIBXp-AWXm2A2aBW0E54z8AgkfTvA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1672168926</pqid></control><display><type>article</type><title>Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Brachi, Benjamin ; Meyer, Christopher G ; Villoutreix, Romain ; Platt, Alexander ; Morton, Timothy C ; Roux, Fabrice ; Bergelson, Joy</creator><creatorcontrib>Brachi, Benjamin ; Meyer, Christopher G ; Villoutreix, Romain ; Platt, Alexander ; Morton, Timothy C ; Roux, Fabrice ; Bergelson, Joy</creatorcontrib><description>The "mustard oil bomb" is a major defense mechanism in the Brassicaceae, which includes crops such as canola and the model plant Arabidopsis thaliana. These plants produce and store blends of amino acid-derived secondary metabolites called glucosinolates. Upon tissue rupture by natural enemies, the myrosinase enzyme hydrolyses glucosinolates, releasing defense molecules. Brassicaceae display extensive variation in the mixture of glucosinolates that they produce. To investigate the genetics underlying natural variation in glucosinolate profiles, we conducted a large genome-wide association study of 22 methionine-derived glucosinolates using A. thaliana accessions from across Europe. We found that 36% of among accession variation in overall glucosinolate profile was explained by genetic differentiation at only three known loci from the glucosinolate pathway. Glucosinolate-related SNPs were up to 490-fold enriched in the extreme tail of the genome-wide [Formula: see text] scan, indicating strong selection on loci controlling this pathway. Glucosinolate profiles displayed a striking longitudinal gradient with alkenyl and hydroxyalkenyl glucosinolates enriched in the West. We detected a significant contribution of glucosinolate loci toward general herbivore resistance and lifetime fitness in common garden experiments conducted in France, where accessions are enriched in hydroxyalkenyls. In addition to demonstrating the adaptive value of glucosinolate profile variation, we also detected long-distance linkage disequilibrium at two underlying loci, GS-OH and GS-ELONG. Locally cooccurring alleles at these loci display epistatic effects on herbivore resistance and fitness in ecologically realistic conditions. Together, our results suggest that natural selection has favored a locally adaptive configuration of physically unlinked loci in Western Europe.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1421416112</identifier><identifier>PMID: 25775585</identifier><language>eng</language><publisher>United States: National Acad Sciences</publisher><subject>Alleles ; Animals ; Arabidopsis - chemistry ; Arabidopsis - genetics ; Arabidopsis thaliana ; Biodiversity ; Biological Sciences ; Brassicaceae ; Chromatography, Liquid ; chromosomes ; coevolution ; ecotypes ; epistasis ; Epistasis, Genetic ; Evolution, Molecular ; field experimentation ; Flowers & plants ; Genes ; Genetics ; Genomes ; Genomics ; Genotype ; Geography ; glucosinolates ; Glucosinolates - chemistry ; herbivores ; Herbivory ; Insecta ; Life Sciences ; Linkage Disequilibrium ; mass spectrometry ; Metabolites ; Methionine - chemistry ; Molecules ; natural selection ; Polymorphism, Single Nucleotide ; Populations and Evolution ; Principal Component Analysis ; Quantitative Trait Loci ; Selection, Genetic ; Tandem Mass Spectrometry</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-03, Vol.112 (13), p.4032-4037</ispartof><rights>Copyright National Academy of Sciences Mar 31, 2015</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c545t-5d532cf1a8d0f653e71ef98b702170701a117686eb70809a738404d98d6ba30b3</citedby><cites>FETCH-LOGICAL-c545t-5d532cf1a8d0f653e71ef98b702170701a117686eb70809a738404d98d6ba30b3</cites><orcidid>0000-0001-5988-7150 ; 0000-0001-8059-5638</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/13.cover.gif</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386350/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4386350/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25775585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01134027$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Brachi, Benjamin</creatorcontrib><creatorcontrib>Meyer, Christopher G</creatorcontrib><creatorcontrib>Villoutreix, Romain</creatorcontrib><creatorcontrib>Platt, Alexander</creatorcontrib><creatorcontrib>Morton, Timothy C</creatorcontrib><creatorcontrib>Roux, Fabrice</creatorcontrib><creatorcontrib>Bergelson, Joy</creatorcontrib><title>Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The "mustard oil bomb" is a major defense mechanism in the Brassicaceae, which includes crops such as canola and the model plant Arabidopsis thaliana. These plants produce and store blends of amino acid-derived secondary metabolites called glucosinolates. Upon tissue rupture by natural enemies, the myrosinase enzyme hydrolyses glucosinolates, releasing defense molecules. Brassicaceae display extensive variation in the mixture of glucosinolates that they produce. To investigate the genetics underlying natural variation in glucosinolate profiles, we conducted a large genome-wide association study of 22 methionine-derived glucosinolates using A. thaliana accessions from across Europe. We found that 36% of among accession variation in overall glucosinolate profile was explained by genetic differentiation at only three known loci from the glucosinolate pathway. Glucosinolate-related SNPs were up to 490-fold enriched in the extreme tail of the genome-wide [Formula: see text] scan, indicating strong selection on loci controlling this pathway. Glucosinolate profiles displayed a striking longitudinal gradient with alkenyl and hydroxyalkenyl glucosinolates enriched in the West. We detected a significant contribution of glucosinolate loci toward general herbivore resistance and lifetime fitness in common garden experiments conducted in France, where accessions are enriched in hydroxyalkenyls. In addition to demonstrating the adaptive value of glucosinolate profile variation, we also detected long-distance linkage disequilibrium at two underlying loci, GS-OH and GS-ELONG. Locally cooccurring alleles at these loci display epistatic effects on herbivore resistance and fitness in ecologically realistic conditions. Together, our results suggest that natural selection has favored a locally adaptive configuration of physically unlinked loci in Western Europe.</description><subject>Alleles</subject><subject>Animals</subject><subject>Arabidopsis - chemistry</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis thaliana</subject><subject>Biodiversity</subject><subject>Biological Sciences</subject><subject>Brassicaceae</subject><subject>Chromatography, Liquid</subject><subject>chromosomes</subject><subject>coevolution</subject><subject>ecotypes</subject><subject>epistasis</subject><subject>Epistasis, Genetic</subject><subject>Evolution, Molecular</subject><subject>field experimentation</subject><subject>Flowers & plants</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Genotype</subject><subject>Geography</subject><subject>glucosinolates</subject><subject>Glucosinolates - chemistry</subject><subject>herbivores</subject><subject>Herbivory</subject><subject>Insecta</subject><subject>Life Sciences</subject><subject>Linkage Disequilibrium</subject><subject>mass spectrometry</subject><subject>Metabolites</subject><subject>Methionine - chemistry</subject><subject>Molecules</subject><subject>natural selection</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Populations and Evolution</subject><subject>Principal Component Analysis</subject><subject>Quantitative Trait Loci</subject><subject>Selection, Genetic</subject><subject>Tandem Mass Spectrometry</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks2P0zAQxSMEYsvCmRtY4gKH7nr8nQtSVQGLtBIXOFtOMmm9Su1iJ5X2v8ehpcBe4GRr5vfeyONXVS-BXgHV_HofXL4CwUCAAmCPqgXQGpZK1PRxtaCU6aURTFxUz3K-o5TW0tCn1QWTWktp5KK6X8eMA7YjdmSDATPpcMS08wGJ69x-9AckB5e8G30MxAeyxdT4Q0xIEmafRxdaJOM2xWmzjdNYrkiC-6lLLmyQxJ6skmt8F_eFL303eBfc8-pJ74aML07nZfXt44ev65vl7ZdPn9er22UrhRyXspOctT0409FeSY4asK9NoykDTTUFB6CVUVgqhtZOcyOo6GrTqcZx2vDL6v3Rdz81O-xaDGNyg90nv3Pp3kbn7d-d4Ld2Ew9WcKO4pMXg3dFg-0B2s7q1c40CcFFWfYDCvj0NS_H7hHm0O59bHAYXME7ZgqG8_JUw-t-o0oorEJL9B6pqIalWqqBvHqB3cUqhLHg2ZKBMzWbq-ki1KeacsD-_C6idg2XnYNnfwSqKV39u8cz_SlIBXp-AWXm2A2aBW0E54z8AgkfTvA</recordid><startdate>20150331</startdate><enddate>20150331</enddate><creator>Brachi, Benjamin</creator><creator>Meyer, Christopher G</creator><creator>Villoutreix, Romain</creator><creator>Platt, Alexander</creator><creator>Morton, Timothy C</creator><creator>Roux, Fabrice</creator><creator>Bergelson, Joy</creator><general>National Acad Sciences</general><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5988-7150</orcidid><orcidid>https://orcid.org/0000-0001-8059-5638</orcidid></search><sort><creationdate>20150331</creationdate><title>Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana</title><author>Brachi, Benjamin ; Meyer, Christopher G ; Villoutreix, Romain ; Platt, Alexander ; Morton, Timothy C ; Roux, Fabrice ; Bergelson, Joy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c545t-5d532cf1a8d0f653e71ef98b702170701a117686eb70809a738404d98d6ba30b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Arabidopsis - chemistry</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis thaliana</topic><topic>Biodiversity</topic><topic>Biological Sciences</topic><topic>Brassicaceae</topic><topic>Chromatography, Liquid</topic><topic>chromosomes</topic><topic>coevolution</topic><topic>ecotypes</topic><topic>epistasis</topic><topic>Epistasis, Genetic</topic><topic>Evolution, Molecular</topic><topic>field experimentation</topic><topic>Flowers & plants</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Genotype</topic><topic>Geography</topic><topic>glucosinolates</topic><topic>Glucosinolates - chemistry</topic><topic>herbivores</topic><topic>Herbivory</topic><topic>Insecta</topic><topic>Life Sciences</topic><topic>Linkage Disequilibrium</topic><topic>mass spectrometry</topic><topic>Metabolites</topic><topic>Methionine - chemistry</topic><topic>Molecules</topic><topic>natural selection</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Populations and Evolution</topic><topic>Principal Component Analysis</topic><topic>Quantitative Trait Loci</topic><topic>Selection, Genetic</topic><topic>Tandem Mass Spectrometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brachi, Benjamin</creatorcontrib><creatorcontrib>Meyer, Christopher G</creatorcontrib><creatorcontrib>Villoutreix, Romain</creatorcontrib><creatorcontrib>Platt, Alexander</creatorcontrib><creatorcontrib>Morton, Timothy C</creatorcontrib><creatorcontrib>Roux, Fabrice</creatorcontrib><creatorcontrib>Bergelson, Joy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brachi, Benjamin</au><au>Meyer, Christopher G</au><au>Villoutreix, Romain</au><au>Platt, Alexander</au><au>Morton, Timothy C</au><au>Roux, Fabrice</au><au>Bergelson, Joy</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-03-31</date><risdate>2015</risdate><volume>112</volume><issue>13</issue><spage>4032</spage><epage>4037</epage><pages>4032-4037</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The "mustard oil bomb" is a major defense mechanism in the Brassicaceae, which includes crops such as canola and the model plant Arabidopsis thaliana. These plants produce and store blends of amino acid-derived secondary metabolites called glucosinolates. Upon tissue rupture by natural enemies, the myrosinase enzyme hydrolyses glucosinolates, releasing defense molecules. Brassicaceae display extensive variation in the mixture of glucosinolates that they produce. To investigate the genetics underlying natural variation in glucosinolate profiles, we conducted a large genome-wide association study of 22 methionine-derived glucosinolates using A. thaliana accessions from across Europe. We found that 36% of among accession variation in overall glucosinolate profile was explained by genetic differentiation at only three known loci from the glucosinolate pathway. Glucosinolate-related SNPs were up to 490-fold enriched in the extreme tail of the genome-wide [Formula: see text] scan, indicating strong selection on loci controlling this pathway. Glucosinolate profiles displayed a striking longitudinal gradient with alkenyl and hydroxyalkenyl glucosinolates enriched in the West. We detected a significant contribution of glucosinolate loci toward general herbivore resistance and lifetime fitness in common garden experiments conducted in France, where accessions are enriched in hydroxyalkenyls. In addition to demonstrating the adaptive value of glucosinolate profile variation, we also detected long-distance linkage disequilibrium at two underlying loci, GS-OH and GS-ELONG. Locally cooccurring alleles at these loci display epistatic effects on herbivore resistance and fitness in ecologically realistic conditions. Together, our results suggest that natural selection has favored a locally adaptive configuration of physically unlinked loci in Western Europe.</abstract><cop>United States</cop><pub>National Acad Sciences</pub><pmid>25775585</pmid><doi>10.1073/pnas.1421416112</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-5988-7150</orcidid><orcidid>https://orcid.org/0000-0001-8059-5638</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-03, Vol.112 (13), p.4032-4037 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_journals_1672168926 |
source | MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Alleles Animals Arabidopsis - chemistry Arabidopsis - genetics Arabidopsis thaliana Biodiversity Biological Sciences Brassicaceae Chromatography, Liquid chromosomes coevolution ecotypes epistasis Epistasis, Genetic Evolution, Molecular field experimentation Flowers & plants Genes Genetics Genomes Genomics Genotype Geography glucosinolates Glucosinolates - chemistry herbivores Herbivory Insecta Life Sciences Linkage Disequilibrium mass spectrometry Metabolites Methionine - chemistry Molecules natural selection Polymorphism, Single Nucleotide Populations and Evolution Principal Component Analysis Quantitative Trait Loci Selection, Genetic Tandem Mass Spectrometry |
title | Coselected genes determine adaptive variation in herbivore resistance throughout the native range of Arabidopsis thaliana |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T05%3A19%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coselected%20genes%20determine%20adaptive%20variation%20in%20herbivore%20resistance%20throughout%20the%20native%20range%20of%20Arabidopsis%20thaliana&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Brachi,%20Benjamin&rft.date=2015-03-31&rft.volume=112&rft.issue=13&rft.spage=4032&rft.epage=4037&rft.pages=4032-4037&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1421416112&rft_dat=%3Cproquest_hal_p%3E1803141487%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1672168926&rft_id=info:pmid/25775585&rfr_iscdi=true |