Glass transition cooperativity from broad band heat capacity spectroscopy
Molecular dynamics is often studied by broad band dielectric spectroscopy (BDS) because of the wide dynamic range available and the large number of processes resulting in electrical dipole fluctuations and with that in a dielectrically detectable relaxation process. Calorimetry on the other hand is...
Gespeichert in:
Veröffentlicht in: | Colloid and polymer science 2014-08, Vol.292 (8), p.1893-1904 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1904 |
---|---|
container_issue | 8 |
container_start_page | 1893 |
container_title | Colloid and polymer science |
container_volume | 292 |
creator | Chua, Yeong Zen Schulz, Gunnar Shoifet, Evgeni Huth, Heiko Zorn, Reiner Scmelzer, Jürn W. P. Schick, Christoph |
description | Molecular dynamics is often studied by broad band dielectric spectroscopy (BDS) because of the wide dynamic range available and the large number of processes resulting in electrical dipole fluctuations and with that in a dielectrically detectable relaxation process. Calorimetry on the other hand is an effective analytical tool to characterize phase and glass transitions by its signatures in heat capacity. In the linear response scheme, heat capacity is considered as entropy compliance. Consequently, only processes significantly contributing to entropy fluctuations appear in calorimetric curves. The glass relaxation is a prominent example for such a process. Here, we present complex heat capacity at the dynamic glass transition (segmental relaxation) of polystyrene (PS) and poly(methyl methacrylate) (PMMA) in a dynamic range of 11 orders of magnitude, which is comparable to BDS. As one of the results, we determined the characteristic length scale of the corresponding fluctuations. The dynamic glass transition measured by calorimetry is finally compared to the cooling rate dependence of fictive temperature and BDS data. For PS, dielectric and calorimetric data are similar but for PMMA with its very strong secondary relaxation process some peculiarities are observed. |
doi_str_mv | 10.1007/s00396-014-3280-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1670302411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3647159641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-bd1126241827fa2c34542a59ce26a267bae7bc77cba176ae5ff19d8f10bb7b3e3</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKs_wNuCeIzma5PdoxSthYIXBW9hkk10S7tZk1TovzelRbx4msP7MTMPQteU3FFC1H0ihLcSEyowZw3B7ARNqOA1pjWXp2hCOOFYEPZ-ji5SWhFCRCvlBC3ma0ipyhGG1Oc-DJUNYXQRcv_d513lY9hUJgboKgNDV306yJWFEexeTaOzOYZkw7i7RGce1sldHecUvT09vs6e8fJlvpg9LLEVos7YdJQyyQRtmPLALBe1YFC31jEJTCoDThmrlDVAlQRXe0_brvGUGKMMd3yKbg69YwxfW5eyXoVtHMpKTaUqf5ZuWlz04LLlvBSd12PsNxB3mhK9J6YPxHQhpvfENCuZ22MzJAtrX5jYPv0GWaOaVglZfOzgS0UaPlz8c8G_5T8RonvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1670302411</pqid></control><display><type>article</type><title>Glass transition cooperativity from broad band heat capacity spectroscopy</title><source>SpringerLink Journals</source><creator>Chua, Yeong Zen ; Schulz, Gunnar ; Shoifet, Evgeni ; Huth, Heiko ; Zorn, Reiner ; Scmelzer, Jürn W. P. ; Schick, Christoph</creator><creatorcontrib>Chua, Yeong Zen ; Schulz, Gunnar ; Shoifet, Evgeni ; Huth, Heiko ; Zorn, Reiner ; Scmelzer, Jürn W. P. ; Schick, Christoph</creatorcontrib><description>Molecular dynamics is often studied by broad band dielectric spectroscopy (BDS) because of the wide dynamic range available and the large number of processes resulting in electrical dipole fluctuations and with that in a dielectrically detectable relaxation process. Calorimetry on the other hand is an effective analytical tool to characterize phase and glass transitions by its signatures in heat capacity. In the linear response scheme, heat capacity is considered as entropy compliance. Consequently, only processes significantly contributing to entropy fluctuations appear in calorimetric curves. The glass relaxation is a prominent example for such a process. Here, we present complex heat capacity at the dynamic glass transition (segmental relaxation) of polystyrene (PS) and poly(methyl methacrylate) (PMMA) in a dynamic range of 11 orders of magnitude, which is comparable to BDS. As one of the results, we determined the characteristic length scale of the corresponding fluctuations. The dynamic glass transition measured by calorimetry is finally compared to the cooling rate dependence of fictive temperature and BDS data. For PS, dielectric and calorimetric data are similar but for PMMA with its very strong secondary relaxation process some peculiarities are observed.</description><identifier>ISSN: 0303-402X</identifier><identifier>EISSN: 1435-1536</identifier><identifier>DOI: 10.1007/s00396-014-3280-2</identifier><identifier>CODEN: CPMSB6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Applied sciences ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Complex Fluids and Microfluidics ; Exact sciences and technology ; Food Science ; Nanotechnology and Microengineering ; Organic polymers ; Original Contribution ; Physical Chemistry ; Physicochemistry of polymers ; Polymer Sciences ; Properties and characterization ; Soft and Granular Matter ; Thermal and thermodynamic properties</subject><ispartof>Colloid and polymer science, 2014-08, Vol.292 (8), p.1893-1904</ispartof><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-bd1126241827fa2c34542a59ce26a267bae7bc77cba176ae5ff19d8f10bb7b3e3</citedby><cites>FETCH-LOGICAL-c445t-bd1126241827fa2c34542a59ce26a267bae7bc77cba176ae5ff19d8f10bb7b3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00396-014-3280-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00396-014-3280-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28789746$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Chua, Yeong Zen</creatorcontrib><creatorcontrib>Schulz, Gunnar</creatorcontrib><creatorcontrib>Shoifet, Evgeni</creatorcontrib><creatorcontrib>Huth, Heiko</creatorcontrib><creatorcontrib>Zorn, Reiner</creatorcontrib><creatorcontrib>Scmelzer, Jürn W. P.</creatorcontrib><creatorcontrib>Schick, Christoph</creatorcontrib><title>Glass transition cooperativity from broad band heat capacity spectroscopy</title><title>Colloid and polymer science</title><addtitle>Colloid Polym Sci</addtitle><description>Molecular dynamics is often studied by broad band dielectric spectroscopy (BDS) because of the wide dynamic range available and the large number of processes resulting in electrical dipole fluctuations and with that in a dielectrically detectable relaxation process. Calorimetry on the other hand is an effective analytical tool to characterize phase and glass transitions by its signatures in heat capacity. In the linear response scheme, heat capacity is considered as entropy compliance. Consequently, only processes significantly contributing to entropy fluctuations appear in calorimetric curves. The glass relaxation is a prominent example for such a process. Here, we present complex heat capacity at the dynamic glass transition (segmental relaxation) of polystyrene (PS) and poly(methyl methacrylate) (PMMA) in a dynamic range of 11 orders of magnitude, which is comparable to BDS. As one of the results, we determined the characteristic length scale of the corresponding fluctuations. The dynamic glass transition measured by calorimetry is finally compared to the cooling rate dependence of fictive temperature and BDS data. For PS, dielectric and calorimetric data are similar but for PMMA with its very strong secondary relaxation process some peculiarities are observed.</description><subject>Applied sciences</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complex Fluids and Microfluidics</subject><subject>Exact sciences and technology</subject><subject>Food Science</subject><subject>Nanotechnology and Microengineering</subject><subject>Organic polymers</subject><subject>Original Contribution</subject><subject>Physical Chemistry</subject><subject>Physicochemistry of polymers</subject><subject>Polymer Sciences</subject><subject>Properties and characterization</subject><subject>Soft and Granular Matter</subject><subject>Thermal and thermodynamic properties</subject><issn>0303-402X</issn><issn>1435-1536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kE1LAzEQhoMoWKs_wNuCeIzma5PdoxSthYIXBW9hkk10S7tZk1TovzelRbx4msP7MTMPQteU3FFC1H0ihLcSEyowZw3B7ARNqOA1pjWXp2hCOOFYEPZ-ji5SWhFCRCvlBC3ma0ipyhGG1Oc-DJUNYXQRcv_d513lY9hUJgboKgNDV306yJWFEexeTaOzOYZkw7i7RGce1sldHecUvT09vs6e8fJlvpg9LLEVos7YdJQyyQRtmPLALBe1YFC31jEJTCoDThmrlDVAlQRXe0_brvGUGKMMd3yKbg69YwxfW5eyXoVtHMpKTaUqf5ZuWlz04LLlvBSd12PsNxB3mhK9J6YPxHQhpvfENCuZ22MzJAtrX5jYPv0GWaOaVglZfOzgS0UaPlz8c8G_5T8RonvU</recordid><startdate>20140801</startdate><enddate>20140801</enddate><creator>Chua, Yeong Zen</creator><creator>Schulz, Gunnar</creator><creator>Shoifet, Evgeni</creator><creator>Huth, Heiko</creator><creator>Zorn, Reiner</creator><creator>Scmelzer, Jürn W. P.</creator><creator>Schick, Christoph</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20140801</creationdate><title>Glass transition cooperativity from broad band heat capacity spectroscopy</title><author>Chua, Yeong Zen ; Schulz, Gunnar ; Shoifet, Evgeni ; Huth, Heiko ; Zorn, Reiner ; Scmelzer, Jürn W. P. ; Schick, Christoph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-bd1126241827fa2c34542a59ce26a267bae7bc77cba176ae5ff19d8f10bb7b3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Applied sciences</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complex Fluids and Microfluidics</topic><topic>Exact sciences and technology</topic><topic>Food Science</topic><topic>Nanotechnology and Microengineering</topic><topic>Organic polymers</topic><topic>Original Contribution</topic><topic>Physical Chemistry</topic><topic>Physicochemistry of polymers</topic><topic>Polymer Sciences</topic><topic>Properties and characterization</topic><topic>Soft and Granular Matter</topic><topic>Thermal and thermodynamic properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chua, Yeong Zen</creatorcontrib><creatorcontrib>Schulz, Gunnar</creatorcontrib><creatorcontrib>Shoifet, Evgeni</creatorcontrib><creatorcontrib>Huth, Heiko</creatorcontrib><creatorcontrib>Zorn, Reiner</creatorcontrib><creatorcontrib>Scmelzer, Jürn W. P.</creatorcontrib><creatorcontrib>Schick, Christoph</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Colloid and polymer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chua, Yeong Zen</au><au>Schulz, Gunnar</au><au>Shoifet, Evgeni</au><au>Huth, Heiko</au><au>Zorn, Reiner</au><au>Scmelzer, Jürn W. P.</au><au>Schick, Christoph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glass transition cooperativity from broad band heat capacity spectroscopy</atitle><jtitle>Colloid and polymer science</jtitle><stitle>Colloid Polym Sci</stitle><date>2014-08-01</date><risdate>2014</risdate><volume>292</volume><issue>8</issue><spage>1893</spage><epage>1904</epage><pages>1893-1904</pages><issn>0303-402X</issn><eissn>1435-1536</eissn><coden>CPMSB6</coden><abstract>Molecular dynamics is often studied by broad band dielectric spectroscopy (BDS) because of the wide dynamic range available and the large number of processes resulting in electrical dipole fluctuations and with that in a dielectrically detectable relaxation process. Calorimetry on the other hand is an effective analytical tool to characterize phase and glass transitions by its signatures in heat capacity. In the linear response scheme, heat capacity is considered as entropy compliance. Consequently, only processes significantly contributing to entropy fluctuations appear in calorimetric curves. The glass relaxation is a prominent example for such a process. Here, we present complex heat capacity at the dynamic glass transition (segmental relaxation) of polystyrene (PS) and poly(methyl methacrylate) (PMMA) in a dynamic range of 11 orders of magnitude, which is comparable to BDS. As one of the results, we determined the characteristic length scale of the corresponding fluctuations. The dynamic glass transition measured by calorimetry is finally compared to the cooling rate dependence of fictive temperature and BDS data. For PS, dielectric and calorimetric data are similar but for PMMA with its very strong secondary relaxation process some peculiarities are observed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00396-014-3280-2</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0303-402X |
ispartof | Colloid and polymer science, 2014-08, Vol.292 (8), p.1893-1904 |
issn | 0303-402X 1435-1536 |
language | eng |
recordid | cdi_proquest_journals_1670302411 |
source | SpringerLink Journals |
subjects | Applied sciences Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Complex Fluids and Microfluidics Exact sciences and technology Food Science Nanotechnology and Microengineering Organic polymers Original Contribution Physical Chemistry Physicochemistry of polymers Polymer Sciences Properties and characterization Soft and Granular Matter Thermal and thermodynamic properties |
title | Glass transition cooperativity from broad band heat capacity spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A57%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glass%20transition%20cooperativity%20from%20broad%20band%20heat%20capacity%20spectroscopy&rft.jtitle=Colloid%20and%20polymer%20science&rft.au=Chua,%20Yeong%20Zen&rft.date=2014-08-01&rft.volume=292&rft.issue=8&rft.spage=1893&rft.epage=1904&rft.pages=1893-1904&rft.issn=0303-402X&rft.eissn=1435-1536&rft.coden=CPMSB6&rft_id=info:doi/10.1007/s00396-014-3280-2&rft_dat=%3Cproquest_cross%3E3647159641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1670302411&rft_id=info:pmid/&rfr_iscdi=true |