Estimation of Soil Cation Exchange Capacity using Multiple Regression, Artificial Neural Networks, and Adaptive Neuro-fuzzy Inference System Models in Golestan Province, Iran

Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) provide an alternative by estimating soil parameters from more readily available data. In this article, multilayer perceptron (MLP) and radial basis function (RBF) of ANN and ANFIS models were described to estimate s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in Soil Science and Plant Analysis 2015-03, Vol.46 (6), p.763-780
Hauptverfasser: Ghorbani, Hadi, Kashi, Hamed, Hafezi Moghadas, Naser, Emamgholizadeh, Samad
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 780
container_issue 6
container_start_page 763
container_title Communications in Soil Science and Plant Analysis
container_volume 46
creator Ghorbani, Hadi
Kashi, Hamed
Hafezi Moghadas, Naser
Emamgholizadeh, Samad
description Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) provide an alternative by estimating soil parameters from more readily available data. In this article, multilayer perceptron (MLP) and radial basis function (RBF) of ANN and ANFIS models were described to estimate soil cation exchange capacity and compared to traditional multiple regression (MR). Moreover, to test the accuracy of previous functions that estimate cation exchange capacity (CEC), five pedotransfer functions (PTFs) were surveyed. The results showed that the accuracies of ANN and ANFIS models were similar in relation to their statistical parameters. It was also found that ANFIS model exhibited greater performance than RBF, MLP, MR, and PTFs to estimate soil CEC, respectively. Finally, sensitivity analysis was conducted to determine the most and the least influential variables affecting soil CEC. The performance comparisons of used models showed that the soft computing system is a good tool to predict soil characteristics.
doi_str_mv 10.1080/00103624.2015.1006367
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1668322759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1676358319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-d7e49a2a2ed4c7289afaa76b2e33a53b3a594ad1a6daa5e725afac8dba7daf033</originalsourceid><addsrcrecordid>eNqFks9u1DAQxiMEEqXwCAhLXDhsimMnTnJjtVrKSi0glp6tWf9ZXLz21nYK6UPxjDhNkRAXLh7P-PeNRvO5KF5W-KzCHX6LcYUpI_UZwVWTS5hR1j4qTqqGkpLUFXv81_1p8SzG6yzpW0xOil_rmMwBkvEOeY223li0mtP1T_EN3F7l_AjCpBEN0bg9uhxsMker0Be1DyrGzC7QMiSjjTBg0Uc1hPuQfvjwPS4QOImWEo7J3Kr7V1_q4e5uRBunVVBOKLQdY1IHdOmlshEZh869VTGBQ5-DvzUZWaBNAPe8eKLBRvXiIZ4WV-_XX1cfyotP55vV8qIUNWtSKVtV90CAKFmLlnQ9aICW7YiiFBq6y0dfg6yASYBGtaTJgOjkDloJGlN6WryZ-x6DvxnyJPxgolDWglN-iLxiLaNNR6s-o6__Qa_9EFyeLlOso4S0zUQ1MyWCjzEozY8h7z2MvMJ8cpH_cZFPLvIHF7Pu3awzTvtwgLxSK3mC0fqg80KEiZz-r8WruYUGz2EfsuJqOxHTJ-hxTehv5TKwKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1668322759</pqid></control><display><type>article</type><title>Estimation of Soil Cation Exchange Capacity using Multiple Regression, Artificial Neural Networks, and Adaptive Neuro-fuzzy Inference System Models in Golestan Province, Iran</title><source>Taylor &amp; Francis Journals Complete</source><creator>Ghorbani, Hadi ; Kashi, Hamed ; Hafezi Moghadas, Naser ; Emamgholizadeh, Samad</creator><creatorcontrib>Ghorbani, Hadi ; Kashi, Hamed ; Hafezi Moghadas, Naser ; Emamgholizadeh, Samad</creatorcontrib><description>Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) provide an alternative by estimating soil parameters from more readily available data. In this article, multilayer perceptron (MLP) and radial basis function (RBF) of ANN and ANFIS models were described to estimate soil cation exchange capacity and compared to traditional multiple regression (MR). Moreover, to test the accuracy of previous functions that estimate cation exchange capacity (CEC), five pedotransfer functions (PTFs) were surveyed. The results showed that the accuracies of ANN and ANFIS models were similar in relation to their statistical parameters. It was also found that ANFIS model exhibited greater performance than RBF, MLP, MR, and PTFs to estimate soil CEC, respectively. Finally, sensitivity analysis was conducted to determine the most and the least influential variables affecting soil CEC. The performance comparisons of used models showed that the soft computing system is a good tool to predict soil characteristics.</description><identifier>ISSN: 1532-2416</identifier><identifier>ISSN: 0010-3624</identifier><identifier>EISSN: 1532-2416</identifier><identifier>EISSN: 1532-4133</identifier><identifier>DOI: 10.1080/00103624.2015.1006367</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Adaptive neuro-fuzzy inference system ; artificial neural networks ; cation exchange capacity ; fuzzy logic ; multiple regression ; Neural networks ; pedotransfer function ; pedotransfer functions ; soil characteristics ; Soil sciences</subject><ispartof>Communications in Soil Science and Plant Analysis, 2015-03, Vol.46 (6), p.763-780</ispartof><rights>Copyright © Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-d7e49a2a2ed4c7289afaa76b2e33a53b3a594ad1a6daa5e725afac8dba7daf033</citedby><cites>FETCH-LOGICAL-c465t-d7e49a2a2ed4c7289afaa76b2e33a53b3a594ad1a6daa5e725afac8dba7daf033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ghorbani, Hadi</creatorcontrib><creatorcontrib>Kashi, Hamed</creatorcontrib><creatorcontrib>Hafezi Moghadas, Naser</creatorcontrib><creatorcontrib>Emamgholizadeh, Samad</creatorcontrib><title>Estimation of Soil Cation Exchange Capacity using Multiple Regression, Artificial Neural Networks, and Adaptive Neuro-fuzzy Inference System Models in Golestan Province, Iran</title><title>Communications in Soil Science and Plant Analysis</title><description>Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) provide an alternative by estimating soil parameters from more readily available data. In this article, multilayer perceptron (MLP) and radial basis function (RBF) of ANN and ANFIS models were described to estimate soil cation exchange capacity and compared to traditional multiple regression (MR). Moreover, to test the accuracy of previous functions that estimate cation exchange capacity (CEC), five pedotransfer functions (PTFs) were surveyed. The results showed that the accuracies of ANN and ANFIS models were similar in relation to their statistical parameters. It was also found that ANFIS model exhibited greater performance than RBF, MLP, MR, and PTFs to estimate soil CEC, respectively. Finally, sensitivity analysis was conducted to determine the most and the least influential variables affecting soil CEC. The performance comparisons of used models showed that the soft computing system is a good tool to predict soil characteristics.</description><subject>Adaptive neuro-fuzzy inference system</subject><subject>artificial neural networks</subject><subject>cation exchange capacity</subject><subject>fuzzy logic</subject><subject>multiple regression</subject><subject>Neural networks</subject><subject>pedotransfer function</subject><subject>pedotransfer functions</subject><subject>soil characteristics</subject><subject>Soil sciences</subject><issn>1532-2416</issn><issn>0010-3624</issn><issn>1532-2416</issn><issn>1532-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFks9u1DAQxiMEEqXwCAhLXDhsimMnTnJjtVrKSi0glp6tWf9ZXLz21nYK6UPxjDhNkRAXLh7P-PeNRvO5KF5W-KzCHX6LcYUpI_UZwVWTS5hR1j4qTqqGkpLUFXv81_1p8SzG6yzpW0xOil_rmMwBkvEOeY223li0mtP1T_EN3F7l_AjCpBEN0bg9uhxsMker0Be1DyrGzC7QMiSjjTBg0Uc1hPuQfvjwPS4QOImWEo7J3Kr7V1_q4e5uRBunVVBOKLQdY1IHdOmlshEZh869VTGBQ5-DvzUZWaBNAPe8eKLBRvXiIZ4WV-_XX1cfyotP55vV8qIUNWtSKVtV90CAKFmLlnQ9aICW7YiiFBq6y0dfg6yASYBGtaTJgOjkDloJGlN6WryZ-x6DvxnyJPxgolDWglN-iLxiLaNNR6s-o6__Qa_9EFyeLlOso4S0zUQ1MyWCjzEozY8h7z2MvMJ8cpH_cZFPLvIHF7Pu3awzTvtwgLxSK3mC0fqg80KEiZz-r8WruYUGz2EfsuJqOxHTJ-hxTehv5TKwKQ</recordid><startdate>20150326</startdate><enddate>20150326</enddate><creator>Ghorbani, Hadi</creator><creator>Kashi, Hamed</creator><creator>Hafezi Moghadas, Naser</creator><creator>Emamgholizadeh, Samad</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20150326</creationdate><title>Estimation of Soil Cation Exchange Capacity using Multiple Regression, Artificial Neural Networks, and Adaptive Neuro-fuzzy Inference System Models in Golestan Province, Iran</title><author>Ghorbani, Hadi ; Kashi, Hamed ; Hafezi Moghadas, Naser ; Emamgholizadeh, Samad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-d7e49a2a2ed4c7289afaa76b2e33a53b3a594ad1a6daa5e725afac8dba7daf033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive neuro-fuzzy inference system</topic><topic>artificial neural networks</topic><topic>cation exchange capacity</topic><topic>fuzzy logic</topic><topic>multiple regression</topic><topic>Neural networks</topic><topic>pedotransfer function</topic><topic>pedotransfer functions</topic><topic>soil characteristics</topic><topic>Soil sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghorbani, Hadi</creatorcontrib><creatorcontrib>Kashi, Hamed</creatorcontrib><creatorcontrib>Hafezi Moghadas, Naser</creatorcontrib><creatorcontrib>Emamgholizadeh, Samad</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Communications in Soil Science and Plant Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghorbani, Hadi</au><au>Kashi, Hamed</au><au>Hafezi Moghadas, Naser</au><au>Emamgholizadeh, Samad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Soil Cation Exchange Capacity using Multiple Regression, Artificial Neural Networks, and Adaptive Neuro-fuzzy Inference System Models in Golestan Province, Iran</atitle><jtitle>Communications in Soil Science and Plant Analysis</jtitle><date>2015-03-26</date><risdate>2015</risdate><volume>46</volume><issue>6</issue><spage>763</spage><epage>780</epage><pages>763-780</pages><issn>1532-2416</issn><issn>0010-3624</issn><eissn>1532-2416</eissn><eissn>1532-4133</eissn><abstract>Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) provide an alternative by estimating soil parameters from more readily available data. In this article, multilayer perceptron (MLP) and radial basis function (RBF) of ANN and ANFIS models were described to estimate soil cation exchange capacity and compared to traditional multiple regression (MR). Moreover, to test the accuracy of previous functions that estimate cation exchange capacity (CEC), five pedotransfer functions (PTFs) were surveyed. The results showed that the accuracies of ANN and ANFIS models were similar in relation to their statistical parameters. It was also found that ANFIS model exhibited greater performance than RBF, MLP, MR, and PTFs to estimate soil CEC, respectively. Finally, sensitivity analysis was conducted to determine the most and the least influential variables affecting soil CEC. The performance comparisons of used models showed that the soft computing system is a good tool to predict soil characteristics.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00103624.2015.1006367</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1532-2416
ispartof Communications in Soil Science and Plant Analysis, 2015-03, Vol.46 (6), p.763-780
issn 1532-2416
0010-3624
1532-2416
1532-4133
language eng
recordid cdi_proquest_journals_1668322759
source Taylor & Francis Journals Complete
subjects Adaptive neuro-fuzzy inference system
artificial neural networks
cation exchange capacity
fuzzy logic
multiple regression
Neural networks
pedotransfer function
pedotransfer functions
soil characteristics
Soil sciences
title Estimation of Soil Cation Exchange Capacity using Multiple Regression, Artificial Neural Networks, and Adaptive Neuro-fuzzy Inference System Models in Golestan Province, Iran
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Soil%20Cation%20Exchange%20Capacity%20using%20Multiple%20Regression,%20Artificial%20Neural%20Networks,%20and%20Adaptive%20Neuro-fuzzy%20Inference%20System%20Models%20in%20Golestan%20Province,%20Iran&rft.jtitle=Communications%20in%20Soil%20Science%20and%20Plant%20Analysis&rft.au=Ghorbani,%20Hadi&rft.date=2015-03-26&rft.volume=46&rft.issue=6&rft.spage=763&rft.epage=780&rft.pages=763-780&rft.issn=1532-2416&rft.eissn=1532-2416&rft_id=info:doi/10.1080/00103624.2015.1006367&rft_dat=%3Cproquest_infor%3E1676358319%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1668322759&rft_id=info:pmid/&rfr_iscdi=true