Estimation of Soil Cation Exchange Capacity using Multiple Regression, Artificial Neural Networks, and Adaptive Neuro-fuzzy Inference System Models in Golestan Province, Iran
Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) provide an alternative by estimating soil parameters from more readily available data. In this article, multilayer perceptron (MLP) and radial basis function (RBF) of ANN and ANFIS models were described to estimate s...
Gespeichert in:
Veröffentlicht in: | Communications in Soil Science and Plant Analysis 2015-03, Vol.46 (6), p.763-780 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 780 |
---|---|
container_issue | 6 |
container_start_page | 763 |
container_title | Communications in Soil Science and Plant Analysis |
container_volume | 46 |
creator | Ghorbani, Hadi Kashi, Hamed Hafezi Moghadas, Naser Emamgholizadeh, Samad |
description | Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) provide an alternative by estimating soil parameters from more readily available data. In this article, multilayer perceptron (MLP) and radial basis function (RBF) of ANN and ANFIS models were described to estimate soil cation exchange capacity and compared to traditional multiple regression (MR). Moreover, to test the accuracy of previous functions that estimate cation exchange capacity (CEC), five pedotransfer functions (PTFs) were surveyed. The results showed that the accuracies of ANN and ANFIS models were similar in relation to their statistical parameters. It was also found that ANFIS model exhibited greater performance than RBF, MLP, MR, and PTFs to estimate soil CEC, respectively. Finally, sensitivity analysis was conducted to determine the most and the least influential variables affecting soil CEC. The performance comparisons of used models showed that the soft computing system is a good tool to predict soil characteristics. |
doi_str_mv | 10.1080/00103624.2015.1006367 |
format | Article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1668322759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1676358319</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-d7e49a2a2ed4c7289afaa76b2e33a53b3a594ad1a6daa5e725afac8dba7daf033</originalsourceid><addsrcrecordid>eNqFks9u1DAQxiMEEqXwCAhLXDhsimMnTnJjtVrKSi0glp6tWf9ZXLz21nYK6UPxjDhNkRAXLh7P-PeNRvO5KF5W-KzCHX6LcYUpI_UZwVWTS5hR1j4qTqqGkpLUFXv81_1p8SzG6yzpW0xOil_rmMwBkvEOeY223li0mtP1T_EN3F7l_AjCpBEN0bg9uhxsMker0Be1DyrGzC7QMiSjjTBg0Uc1hPuQfvjwPS4QOImWEo7J3Kr7V1_q4e5uRBunVVBOKLQdY1IHdOmlshEZh869VTGBQ5-DvzUZWaBNAPe8eKLBRvXiIZ4WV-_XX1cfyotP55vV8qIUNWtSKVtV90CAKFmLlnQ9aICW7YiiFBq6y0dfg6yASYBGtaTJgOjkDloJGlN6WryZ-x6DvxnyJPxgolDWglN-iLxiLaNNR6s-o6__Qa_9EFyeLlOso4S0zUQ1MyWCjzEozY8h7z2MvMJ8cpH_cZFPLvIHF7Pu3awzTvtwgLxSK3mC0fqg80KEiZz-r8WruYUGz2EfsuJqOxHTJ-hxTehv5TKwKQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1668322759</pqid></control><display><type>article</type><title>Estimation of Soil Cation Exchange Capacity using Multiple Regression, Artificial Neural Networks, and Adaptive Neuro-fuzzy Inference System Models in Golestan Province, Iran</title><source>Taylor & Francis Journals Complete</source><creator>Ghorbani, Hadi ; Kashi, Hamed ; Hafezi Moghadas, Naser ; Emamgholizadeh, Samad</creator><creatorcontrib>Ghorbani, Hadi ; Kashi, Hamed ; Hafezi Moghadas, Naser ; Emamgholizadeh, Samad</creatorcontrib><description>Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) provide an alternative by estimating soil parameters from more readily available data. In this article, multilayer perceptron (MLP) and radial basis function (RBF) of ANN and ANFIS models were described to estimate soil cation exchange capacity and compared to traditional multiple regression (MR). Moreover, to test the accuracy of previous functions that estimate cation exchange capacity (CEC), five pedotransfer functions (PTFs) were surveyed. The results showed that the accuracies of ANN and ANFIS models were similar in relation to their statistical parameters. It was also found that ANFIS model exhibited greater performance than RBF, MLP, MR, and PTFs to estimate soil CEC, respectively. Finally, sensitivity analysis was conducted to determine the most and the least influential variables affecting soil CEC. The performance comparisons of used models showed that the soft computing system is a good tool to predict soil characteristics.</description><identifier>ISSN: 1532-2416</identifier><identifier>ISSN: 0010-3624</identifier><identifier>EISSN: 1532-2416</identifier><identifier>EISSN: 1532-4133</identifier><identifier>DOI: 10.1080/00103624.2015.1006367</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>Adaptive neuro-fuzzy inference system ; artificial neural networks ; cation exchange capacity ; fuzzy logic ; multiple regression ; Neural networks ; pedotransfer function ; pedotransfer functions ; soil characteristics ; Soil sciences</subject><ispartof>Communications in Soil Science and Plant Analysis, 2015-03, Vol.46 (6), p.763-780</ispartof><rights>Copyright © Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-d7e49a2a2ed4c7289afaa76b2e33a53b3a594ad1a6daa5e725afac8dba7daf033</citedby><cites>FETCH-LOGICAL-c465t-d7e49a2a2ed4c7289afaa76b2e33a53b3a594ad1a6daa5e725afac8dba7daf033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Ghorbani, Hadi</creatorcontrib><creatorcontrib>Kashi, Hamed</creatorcontrib><creatorcontrib>Hafezi Moghadas, Naser</creatorcontrib><creatorcontrib>Emamgholizadeh, Samad</creatorcontrib><title>Estimation of Soil Cation Exchange Capacity using Multiple Regression, Artificial Neural Networks, and Adaptive Neuro-fuzzy Inference System Models in Golestan Province, Iran</title><title>Communications in Soil Science and Plant Analysis</title><description>Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) provide an alternative by estimating soil parameters from more readily available data. In this article, multilayer perceptron (MLP) and radial basis function (RBF) of ANN and ANFIS models were described to estimate soil cation exchange capacity and compared to traditional multiple regression (MR). Moreover, to test the accuracy of previous functions that estimate cation exchange capacity (CEC), five pedotransfer functions (PTFs) were surveyed. The results showed that the accuracies of ANN and ANFIS models were similar in relation to their statistical parameters. It was also found that ANFIS model exhibited greater performance than RBF, MLP, MR, and PTFs to estimate soil CEC, respectively. Finally, sensitivity analysis was conducted to determine the most and the least influential variables affecting soil CEC. The performance comparisons of used models showed that the soft computing system is a good tool to predict soil characteristics.</description><subject>Adaptive neuro-fuzzy inference system</subject><subject>artificial neural networks</subject><subject>cation exchange capacity</subject><subject>fuzzy logic</subject><subject>multiple regression</subject><subject>Neural networks</subject><subject>pedotransfer function</subject><subject>pedotransfer functions</subject><subject>soil characteristics</subject><subject>Soil sciences</subject><issn>1532-2416</issn><issn>0010-3624</issn><issn>1532-2416</issn><issn>1532-4133</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFks9u1DAQxiMEEqXwCAhLXDhsimMnTnJjtVrKSi0glp6tWf9ZXLz21nYK6UPxjDhNkRAXLh7P-PeNRvO5KF5W-KzCHX6LcYUpI_UZwVWTS5hR1j4qTqqGkpLUFXv81_1p8SzG6yzpW0xOil_rmMwBkvEOeY223li0mtP1T_EN3F7l_AjCpBEN0bg9uhxsMker0Be1DyrGzC7QMiSjjTBg0Uc1hPuQfvjwPS4QOImWEo7J3Kr7V1_q4e5uRBunVVBOKLQdY1IHdOmlshEZh869VTGBQ5-DvzUZWaBNAPe8eKLBRvXiIZ4WV-_XX1cfyotP55vV8qIUNWtSKVtV90CAKFmLlnQ9aICW7YiiFBq6y0dfg6yASYBGtaTJgOjkDloJGlN6WryZ-x6DvxnyJPxgolDWglN-iLxiLaNNR6s-o6__Qa_9EFyeLlOso4S0zUQ1MyWCjzEozY8h7z2MvMJ8cpH_cZFPLvIHF7Pu3awzTvtwgLxSK3mC0fqg80KEiZz-r8WruYUGz2EfsuJqOxHTJ-hxTehv5TKwKQ</recordid><startdate>20150326</startdate><enddate>20150326</enddate><creator>Ghorbani, Hadi</creator><creator>Kashi, Hamed</creator><creator>Hafezi Moghadas, Naser</creator><creator>Emamgholizadeh, Samad</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>FBQ</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H97</scope><scope>L.G</scope><scope>P64</scope><scope>SOI</scope></search><sort><creationdate>20150326</creationdate><title>Estimation of Soil Cation Exchange Capacity using Multiple Regression, Artificial Neural Networks, and Adaptive Neuro-fuzzy Inference System Models in Golestan Province, Iran</title><author>Ghorbani, Hadi ; Kashi, Hamed ; Hafezi Moghadas, Naser ; Emamgholizadeh, Samad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-d7e49a2a2ed4c7289afaa76b2e33a53b3a594ad1a6daa5e725afac8dba7daf033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adaptive neuro-fuzzy inference system</topic><topic>artificial neural networks</topic><topic>cation exchange capacity</topic><topic>fuzzy logic</topic><topic>multiple regression</topic><topic>Neural networks</topic><topic>pedotransfer function</topic><topic>pedotransfer functions</topic><topic>soil characteristics</topic><topic>Soil sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghorbani, Hadi</creatorcontrib><creatorcontrib>Kashi, Hamed</creatorcontrib><creatorcontrib>Hafezi Moghadas, Naser</creatorcontrib><creatorcontrib>Emamgholizadeh, Samad</creatorcontrib><collection>AGRIS</collection><collection>CrossRef</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><jtitle>Communications in Soil Science and Plant Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghorbani, Hadi</au><au>Kashi, Hamed</au><au>Hafezi Moghadas, Naser</au><au>Emamgholizadeh, Samad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of Soil Cation Exchange Capacity using Multiple Regression, Artificial Neural Networks, and Adaptive Neuro-fuzzy Inference System Models in Golestan Province, Iran</atitle><jtitle>Communications in Soil Science and Plant Analysis</jtitle><date>2015-03-26</date><risdate>2015</risdate><volume>46</volume><issue>6</issue><spage>763</spage><epage>780</epage><pages>763-780</pages><issn>1532-2416</issn><issn>0010-3624</issn><eissn>1532-2416</eissn><eissn>1532-4133</eissn><abstract>Artificial neural networks (ANN) and adaptive neuro-fuzzy inference systems (ANFIS) provide an alternative by estimating soil parameters from more readily available data. In this article, multilayer perceptron (MLP) and radial basis function (RBF) of ANN and ANFIS models were described to estimate soil cation exchange capacity and compared to traditional multiple regression (MR). Moreover, to test the accuracy of previous functions that estimate cation exchange capacity (CEC), five pedotransfer functions (PTFs) were surveyed. The results showed that the accuracies of ANN and ANFIS models were similar in relation to their statistical parameters. It was also found that ANFIS model exhibited greater performance than RBF, MLP, MR, and PTFs to estimate soil CEC, respectively. Finally, sensitivity analysis was conducted to determine the most and the least influential variables affecting soil CEC. The performance comparisons of used models showed that the soft computing system is a good tool to predict soil characteristics.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/00103624.2015.1006367</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1532-2416 |
ispartof | Communications in Soil Science and Plant Analysis, 2015-03, Vol.46 (6), p.763-780 |
issn | 1532-2416 0010-3624 1532-2416 1532-4133 |
language | eng |
recordid | cdi_proquest_journals_1668322759 |
source | Taylor & Francis Journals Complete |
subjects | Adaptive neuro-fuzzy inference system artificial neural networks cation exchange capacity fuzzy logic multiple regression Neural networks pedotransfer function pedotransfer functions soil characteristics Soil sciences |
title | Estimation of Soil Cation Exchange Capacity using Multiple Regression, Artificial Neural Networks, and Adaptive Neuro-fuzzy Inference System Models in Golestan Province, Iran |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T17%3A15%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20Soil%20Cation%20Exchange%20Capacity%20using%20Multiple%20Regression,%20Artificial%20Neural%20Networks,%20and%20Adaptive%20Neuro-fuzzy%20Inference%20System%20Models%20in%20Golestan%20Province,%20Iran&rft.jtitle=Communications%20in%20Soil%20Science%20and%20Plant%20Analysis&rft.au=Ghorbani,%20Hadi&rft.date=2015-03-26&rft.volume=46&rft.issue=6&rft.spage=763&rft.epage=780&rft.pages=763-780&rft.issn=1532-2416&rft.eissn=1532-2416&rft_id=info:doi/10.1080/00103624.2015.1006367&rft_dat=%3Cproquest_infor%3E1676358319%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1668322759&rft_id=info:pmid/&rfr_iscdi=true |