Carrier drift velocity balance mechanism in Si-based thin film solar cells using graded microcrystalline SiGe absorption layer

[Display omitted] •The graded i-SiGe absorption layer was used to balance the carrier drift velocity.•The improvement in balance mechanism was studied by the biased quantum efficiency.•The carrier recombination loss was reduced due to balanced-carrier drift velocity. The basic idea of balancing the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solar energy 2015-04, Vol.114, p.1-7
Hauptverfasser: Lee, Ching-Ting, Lu, Kuan-Fu, Tseng, Chun-Yen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title Solar energy
container_volume 114
creator Lee, Ching-Ting
Lu, Kuan-Fu
Tseng, Chun-Yen
description [Display omitted] •The graded i-SiGe absorption layer was used to balance the carrier drift velocity.•The improvement in balance mechanism was studied by the biased quantum efficiency.•The carrier recombination loss was reduced due to balanced-carrier drift velocity. The basic idea of balancing the carrier drift velocity in the absorption layer was proposed to improve the conversion efficiency of Si-based thin film solar cells. Using the graded microcrystalline i-SiGe absorption layer to modulate the energy band, the driven electric field of holes was increased from 5.92kV/cm to 7.26kV/cm, while the driven electric field of electrons was kept at 5.92kV/cm. Compared with the step i-SiGe absorption layer, the drift velocity ratio of electrons and holes was more balanced. The improvement mechanism of the p-Si/graded-i-SiGe/n-Si solar cells was further analyzed using the measurement of the biased quantum efficiency. Consequently, the short-circuit current density and the associated conversion efficiency of the p-Si/graded-i-SiGe/n-Si solar cells were improved from 21.40±0.47mA/cm2 to 26.36±0.56mA/cm2 and from 7.43±0.23% to 9.15±0.25%, respectively compared with the p-Si/step-i-SiGe/n-Si solar cells.
doi_str_mv 10.1016/j.solener.2015.01.023
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1668188699</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X15000377</els_id><sourcerecordid>3642524191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-e66bde9e19d082d7f00a59cc825114cf0c4e0b3055245cd1056f0dc3d7bba2f23</originalsourceid><addsrcrecordid>eNqFkE1r3DAQhkVpodttf0JB0LPdGdnyx6mUJUkDgRySQG9ClsaJFtnejryBvfS3R2Fzz2kYeD9mHiG-I5QI2Pzcl2mJNBOXClCXgCWo6oPYYN1igUq3H8UGoOoK6NXfz-JLSnsAbLFrN-L_zjIHYuk5jKt8pri4sJ7kYKOdHcmJ3JOdQ5pkmOVdKAabyMv1KW9jiJPMzZaloxiTPKYwP8pHtj5LpuB4cXxKq40xzJTNVyTtkBY-rGGZZbQn4q_i02hjom9vcyseLi_ud3-Km9ur693vm8LVUK0FNc3gqSfsPXTKtyOA1b1zndKItRvB1QRDBVqrWjuPoJsRvKt8OwxWjaraih_n3AMv_46UVrNfjjznSoNN02HXNX2fVfqsyqenxDSaA4fJ8skgmFfUZm_eUJtX1AbQZNTZ9-vso_zCc6ZpkguU8fnA5Fbjl_BOwgu2s4zX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1668188699</pqid></control><display><type>article</type><title>Carrier drift velocity balance mechanism in Si-based thin film solar cells using graded microcrystalline SiGe absorption layer</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Lee, Ching-Ting ; Lu, Kuan-Fu ; Tseng, Chun-Yen</creator><creatorcontrib>Lee, Ching-Ting ; Lu, Kuan-Fu ; Tseng, Chun-Yen</creatorcontrib><description>[Display omitted] •The graded i-SiGe absorption layer was used to balance the carrier drift velocity.•The improvement in balance mechanism was studied by the biased quantum efficiency.•The carrier recombination loss was reduced due to balanced-carrier drift velocity. The basic idea of balancing the carrier drift velocity in the absorption layer was proposed to improve the conversion efficiency of Si-based thin film solar cells. Using the graded microcrystalline i-SiGe absorption layer to modulate the energy band, the driven electric field of holes was increased from 5.92kV/cm to 7.26kV/cm, while the driven electric field of electrons was kept at 5.92kV/cm. Compared with the step i-SiGe absorption layer, the drift velocity ratio of electrons and holes was more balanced. The improvement mechanism of the p-Si/graded-i-SiGe/n-Si solar cells was further analyzed using the measurement of the biased quantum efficiency. Consequently, the short-circuit current density and the associated conversion efficiency of the p-Si/graded-i-SiGe/n-Si solar cells were improved from 21.40±0.47mA/cm2 to 26.36±0.56mA/cm2 and from 7.43±0.23% to 9.15±0.25%, respectively compared with the p-Si/step-i-SiGe/n-Si solar cells.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2015.01.023</identifier><identifier>CODEN: SRENA4</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Balanced carrier drift velocity ; Biased quantum efficiency ; Electric fields ; Electrons ; Energy band modulation ; Energy efficiency ; Laser-assisted plasma-enhanced chemical vapor deposition ; Microcrystalline silicon–germanium thin film ; Photovoltaic cells ; Solar energy ; Space-charge-limited current</subject><ispartof>Solar energy, 2015-04, Vol.114, p.1-7</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Apr 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-e66bde9e19d082d7f00a59cc825114cf0c4e0b3055245cd1056f0dc3d7bba2f23</citedby><cites>FETCH-LOGICAL-c403t-e66bde9e19d082d7f00a59cc825114cf0c4e0b3055245cd1056f0dc3d7bba2f23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0038092X15000377$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>Lee, Ching-Ting</creatorcontrib><creatorcontrib>Lu, Kuan-Fu</creatorcontrib><creatorcontrib>Tseng, Chun-Yen</creatorcontrib><title>Carrier drift velocity balance mechanism in Si-based thin film solar cells using graded microcrystalline SiGe absorption layer</title><title>Solar energy</title><description>[Display omitted] •The graded i-SiGe absorption layer was used to balance the carrier drift velocity.•The improvement in balance mechanism was studied by the biased quantum efficiency.•The carrier recombination loss was reduced due to balanced-carrier drift velocity. The basic idea of balancing the carrier drift velocity in the absorption layer was proposed to improve the conversion efficiency of Si-based thin film solar cells. Using the graded microcrystalline i-SiGe absorption layer to modulate the energy band, the driven electric field of holes was increased from 5.92kV/cm to 7.26kV/cm, while the driven electric field of electrons was kept at 5.92kV/cm. Compared with the step i-SiGe absorption layer, the drift velocity ratio of electrons and holes was more balanced. The improvement mechanism of the p-Si/graded-i-SiGe/n-Si solar cells was further analyzed using the measurement of the biased quantum efficiency. Consequently, the short-circuit current density and the associated conversion efficiency of the p-Si/graded-i-SiGe/n-Si solar cells were improved from 21.40±0.47mA/cm2 to 26.36±0.56mA/cm2 and from 7.43±0.23% to 9.15±0.25%, respectively compared with the p-Si/step-i-SiGe/n-Si solar cells.</description><subject>Balanced carrier drift velocity</subject><subject>Biased quantum efficiency</subject><subject>Electric fields</subject><subject>Electrons</subject><subject>Energy band modulation</subject><subject>Energy efficiency</subject><subject>Laser-assisted plasma-enhanced chemical vapor deposition</subject><subject>Microcrystalline silicon–germanium thin film</subject><subject>Photovoltaic cells</subject><subject>Solar energy</subject><subject>Space-charge-limited current</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkE1r3DAQhkVpodttf0JB0LPdGdnyx6mUJUkDgRySQG9ClsaJFtnejryBvfS3R2Fzz2kYeD9mHiG-I5QI2Pzcl2mJNBOXClCXgCWo6oPYYN1igUq3H8UGoOoK6NXfz-JLSnsAbLFrN-L_zjIHYuk5jKt8pri4sJ7kYKOdHcmJ3JOdQ5pkmOVdKAabyMv1KW9jiJPMzZaloxiTPKYwP8pHtj5LpuB4cXxKq40xzJTNVyTtkBY-rGGZZbQn4q_i02hjom9vcyseLi_ud3-Km9ur693vm8LVUK0FNc3gqSfsPXTKtyOA1b1zndKItRvB1QRDBVqrWjuPoJsRvKt8OwxWjaraih_n3AMv_46UVrNfjjznSoNN02HXNX2fVfqsyqenxDSaA4fJ8skgmFfUZm_eUJtX1AbQZNTZ9-vso_zCc6ZpkguU8fnA5Fbjl_BOwgu2s4zX</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Lee, Ching-Ting</creator><creator>Lu, Kuan-Fu</creator><creator>Tseng, Chun-Yen</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>201504</creationdate><title>Carrier drift velocity balance mechanism in Si-based thin film solar cells using graded microcrystalline SiGe absorption layer</title><author>Lee, Ching-Ting ; Lu, Kuan-Fu ; Tseng, Chun-Yen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-e66bde9e19d082d7f00a59cc825114cf0c4e0b3055245cd1056f0dc3d7bba2f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Balanced carrier drift velocity</topic><topic>Biased quantum efficiency</topic><topic>Electric fields</topic><topic>Electrons</topic><topic>Energy band modulation</topic><topic>Energy efficiency</topic><topic>Laser-assisted plasma-enhanced chemical vapor deposition</topic><topic>Microcrystalline silicon–germanium thin film</topic><topic>Photovoltaic cells</topic><topic>Solar energy</topic><topic>Space-charge-limited current</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Ching-Ting</creatorcontrib><creatorcontrib>Lu, Kuan-Fu</creatorcontrib><creatorcontrib>Tseng, Chun-Yen</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Ching-Ting</au><au>Lu, Kuan-Fu</au><au>Tseng, Chun-Yen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carrier drift velocity balance mechanism in Si-based thin film solar cells using graded microcrystalline SiGe absorption layer</atitle><jtitle>Solar energy</jtitle><date>2015-04</date><risdate>2015</risdate><volume>114</volume><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><coden>SRENA4</coden><abstract>[Display omitted] •The graded i-SiGe absorption layer was used to balance the carrier drift velocity.•The improvement in balance mechanism was studied by the biased quantum efficiency.•The carrier recombination loss was reduced due to balanced-carrier drift velocity. The basic idea of balancing the carrier drift velocity in the absorption layer was proposed to improve the conversion efficiency of Si-based thin film solar cells. Using the graded microcrystalline i-SiGe absorption layer to modulate the energy band, the driven electric field of holes was increased from 5.92kV/cm to 7.26kV/cm, while the driven electric field of electrons was kept at 5.92kV/cm. Compared with the step i-SiGe absorption layer, the drift velocity ratio of electrons and holes was more balanced. The improvement mechanism of the p-Si/graded-i-SiGe/n-Si solar cells was further analyzed using the measurement of the biased quantum efficiency. Consequently, the short-circuit current density and the associated conversion efficiency of the p-Si/graded-i-SiGe/n-Si solar cells were improved from 21.40±0.47mA/cm2 to 26.36±0.56mA/cm2 and from 7.43±0.23% to 9.15±0.25%, respectively compared with the p-Si/step-i-SiGe/n-Si solar cells.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2015.01.023</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2015-04, Vol.114, p.1-7
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_journals_1668188699
source Elsevier ScienceDirect Journals Complete
subjects Balanced carrier drift velocity
Biased quantum efficiency
Electric fields
Electrons
Energy band modulation
Energy efficiency
Laser-assisted plasma-enhanced chemical vapor deposition
Microcrystalline silicon–germanium thin film
Photovoltaic cells
Solar energy
Space-charge-limited current
title Carrier drift velocity balance mechanism in Si-based thin film solar cells using graded microcrystalline SiGe absorption layer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A59%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carrier%20drift%20velocity%20balance%20mechanism%20in%20Si-based%20thin%20film%20solar%20cells%20using%20graded%20microcrystalline%20SiGe%20absorption%20layer&rft.jtitle=Solar%20energy&rft.au=Lee,%20Ching-Ting&rft.date=2015-04&rft.volume=114&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0038-092X&rft.eissn=1471-1257&rft.coden=SRENA4&rft_id=info:doi/10.1016/j.solener.2015.01.023&rft_dat=%3Cproquest_cross%3E3642524191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1668188699&rft_id=info:pmid/&rft_els_id=S0038092X15000377&rfr_iscdi=true