Low Temperature, Rapid Thermal Cycle Annealing of HgCdTe Grown on CdTe/Si

The HgCdTe(MCT) grown on CdTe/Si substrate has a high dislocation density due to lattice mismatch. Thermal cycle annealing (TCA) is effective in reducing the dislocation density. The TCA at high temperatures results in inter-diffusion of the constituent elements across the MCT/CdTe interface. In␣thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2015-05, Vol.44 (5), p.1321-1326
Hauptverfasser: Simingalam, Sina, Brill, Gregory, Wijewarnasuriya, Priyalal, Rao, Mulpuri V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1326
container_issue 5
container_start_page 1321
container_title Journal of electronic materials
container_volume 44
creator Simingalam, Sina
Brill, Gregory
Wijewarnasuriya, Priyalal
Rao, Mulpuri V.
description The HgCdTe(MCT) grown on CdTe/Si substrate has a high dislocation density due to lattice mismatch. Thermal cycle annealing (TCA) is effective in reducing the dislocation density. The TCA at high temperatures results in inter-diffusion of the constituent elements across the MCT/CdTe interface. In␣this study, we observed a reduction in dislocation density with good surface morphology due to proper design of the TCA system, low annealing temperature, and large number of annealing cycles. The ampoule containing the samples is placed in direct contact with the graphite heating tube which helps in increasing the heating and cooling rates of the annealing cycle. To maintain Hg overpressure, Hg is placed in the sample holder, instead of in the ampoule to avoid Hg condensation. The best results were obtained by cycling the annealing temperature between 290°C and 350°C. Anneals were performed by using 32, 64, 128 and 256 cycles. We obtained an etch pit density (EPD) as low as 1 × 10 6  cm −2 . Lower EPD was not achieved either by increasing annealing temperature or number of annealing cycles. Through secondary ion mass spectroscopy analysis, we observed very little inter-diffusion of Cd across the MCT/CdTe interface for the 128 cycle annealing. These results show promise in bridging the gap in the device performance between the MCT material grown on CdTe/Si and CdZnTe substrates.
doi_str_mv 10.1007/s11664-014-3542-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1668003308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3641862451</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-dca36c99953cc9d04fd8752f56a468a3fba8bcd6982bef8846b50d41ef7f95c13</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOKd_gLeAV-PyNT-WHkfRbTAQtIK3kKbJ7OjamqyM_fd21IMXTx8vvM_7wYPQPdAnoHQ-iwBSckKBEyZ4QpILNAHBGQElPy_RhDIJRCRMXKObGHeUggAFE7TetEecu33ngjn0wT3iN9NVJc6_XNibGmcnWzu8aBpn6qrZ4tbj1TYrc4eXoT02uG3wOc3eq1t05U0d3d3vnaKPl-c8W5HN63KdLTbEMpAHUlrDpE3TVDBr05JyX6q5SLyQhktlmC-MKmwpU5UUzivFZSFoycH5uU-FBTZFD-NuF9rv3sWD3rV9aIaXelCgKGWMqqEFY8uGNsbgvO5CtTfhpIHqszE9GtODMX02ppOBSUYmDt1m68Kf5X-hH9LlbIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1668003308</pqid></control><display><type>article</type><title>Low Temperature, Rapid Thermal Cycle Annealing of HgCdTe Grown on CdTe/Si</title><source>SpringerLink Journals - AutoHoldings</source><creator>Simingalam, Sina ; Brill, Gregory ; Wijewarnasuriya, Priyalal ; Rao, Mulpuri V.</creator><creatorcontrib>Simingalam, Sina ; Brill, Gregory ; Wijewarnasuriya, Priyalal ; Rao, Mulpuri V.</creatorcontrib><description>The HgCdTe(MCT) grown on CdTe/Si substrate has a high dislocation density due to lattice mismatch. Thermal cycle annealing (TCA) is effective in reducing the dislocation density. The TCA at high temperatures results in inter-diffusion of the constituent elements across the MCT/CdTe interface. In␣this study, we observed a reduction in dislocation density with good surface morphology due to proper design of the TCA system, low annealing temperature, and large number of annealing cycles. The ampoule containing the samples is placed in direct contact with the graphite heating tube which helps in increasing the heating and cooling rates of the annealing cycle. To maintain Hg overpressure, Hg is placed in the sample holder, instead of in the ampoule to avoid Hg condensation. The best results were obtained by cycling the annealing temperature between 290°C and 350°C. Anneals were performed by using 32, 64, 128 and 256 cycles. We obtained an etch pit density (EPD) as low as 1 × 10 6  cm −2 . Lower EPD was not achieved either by increasing annealing temperature or number of annealing cycles. Through secondary ion mass spectroscopy analysis, we observed very little inter-diffusion of Cd across the MCT/CdTe interface for the 128 cycle annealing. These results show promise in bridging the gap in the device performance between the MCT material grown on CdTe/Si and CdZnTe substrates.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-014-3542-2</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Annealing ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Diffusion ; Electronics and Microelectronics ; Instrumentation ; Low temperature physics ; Materials Science ; Optical and Electronic Materials ; Solid State Physics ; Thermal cycling</subject><ispartof>Journal of electronic materials, 2015-05, Vol.44 (5), p.1321-1326</ispartof><rights>The Minerals, Metals &amp; Materials Society and ASM International (outside the USA) 2014</rights><rights>The Minerals, Metals &amp; Materials Society 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-dca36c99953cc9d04fd8752f56a468a3fba8bcd6982bef8846b50d41ef7f95c13</citedby><cites>FETCH-LOGICAL-c316t-dca36c99953cc9d04fd8752f56a468a3fba8bcd6982bef8846b50d41ef7f95c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-014-3542-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-014-3542-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Simingalam, Sina</creatorcontrib><creatorcontrib>Brill, Gregory</creatorcontrib><creatorcontrib>Wijewarnasuriya, Priyalal</creatorcontrib><creatorcontrib>Rao, Mulpuri V.</creatorcontrib><title>Low Temperature, Rapid Thermal Cycle Annealing of HgCdTe Grown on CdTe/Si</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>The HgCdTe(MCT) grown on CdTe/Si substrate has a high dislocation density due to lattice mismatch. Thermal cycle annealing (TCA) is effective in reducing the dislocation density. The TCA at high temperatures results in inter-diffusion of the constituent elements across the MCT/CdTe interface. In␣this study, we observed a reduction in dislocation density with good surface morphology due to proper design of the TCA system, low annealing temperature, and large number of annealing cycles. The ampoule containing the samples is placed in direct contact with the graphite heating tube which helps in increasing the heating and cooling rates of the annealing cycle. To maintain Hg overpressure, Hg is placed in the sample holder, instead of in the ampoule to avoid Hg condensation. The best results were obtained by cycling the annealing temperature between 290°C and 350°C. Anneals were performed by using 32, 64, 128 and 256 cycles. We obtained an etch pit density (EPD) as low as 1 × 10 6  cm −2 . Lower EPD was not achieved either by increasing annealing temperature or number of annealing cycles. Through secondary ion mass spectroscopy analysis, we observed very little inter-diffusion of Cd across the MCT/CdTe interface for the 128 cycle annealing. These results show promise in bridging the gap in the device performance between the MCT material grown on CdTe/Si and CdZnTe substrates.</description><subject>Annealing</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Diffusion</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Low temperature physics</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><subject>Solid State Physics</subject><subject>Thermal cycling</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kM9LwzAYhoMoOKd_gLeAV-PyNT-WHkfRbTAQtIK3kKbJ7OjamqyM_fd21IMXTx8vvM_7wYPQPdAnoHQ-iwBSckKBEyZ4QpILNAHBGQElPy_RhDIJRCRMXKObGHeUggAFE7TetEecu33ngjn0wT3iN9NVJc6_XNibGmcnWzu8aBpn6qrZ4tbj1TYrc4eXoT02uG3wOc3eq1t05U0d3d3vnaKPl-c8W5HN63KdLTbEMpAHUlrDpE3TVDBr05JyX6q5SLyQhktlmC-MKmwpU5UUzivFZSFoycH5uU-FBTZFD-NuF9rv3sWD3rV9aIaXelCgKGWMqqEFY8uGNsbgvO5CtTfhpIHqszE9GtODMX02ppOBSUYmDt1m68Kf5X-hH9LlbIg</recordid><startdate>20150501</startdate><enddate>20150501</enddate><creator>Simingalam, Sina</creator><creator>Brill, Gregory</creator><creator>Wijewarnasuriya, Priyalal</creator><creator>Rao, Mulpuri V.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20150501</creationdate><title>Low Temperature, Rapid Thermal Cycle Annealing of HgCdTe Grown on CdTe/Si</title><author>Simingalam, Sina ; Brill, Gregory ; Wijewarnasuriya, Priyalal ; Rao, Mulpuri V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-dca36c99953cc9d04fd8752f56a468a3fba8bcd6982bef8846b50d41ef7f95c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Annealing</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Diffusion</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Low temperature physics</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><topic>Solid State Physics</topic><topic>Thermal cycling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Simingalam, Sina</creatorcontrib><creatorcontrib>Brill, Gregory</creatorcontrib><creatorcontrib>Wijewarnasuriya, Priyalal</creatorcontrib><creatorcontrib>Rao, Mulpuri V.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Simingalam, Sina</au><au>Brill, Gregory</au><au>Wijewarnasuriya, Priyalal</au><au>Rao, Mulpuri V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Temperature, Rapid Thermal Cycle Annealing of HgCdTe Grown on CdTe/Si</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2015-05-01</date><risdate>2015</risdate><volume>44</volume><issue>5</issue><spage>1321</spage><epage>1326</epage><pages>1321-1326</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>The HgCdTe(MCT) grown on CdTe/Si substrate has a high dislocation density due to lattice mismatch. Thermal cycle annealing (TCA) is effective in reducing the dislocation density. The TCA at high temperatures results in inter-diffusion of the constituent elements across the MCT/CdTe interface. In␣this study, we observed a reduction in dislocation density with good surface morphology due to proper design of the TCA system, low annealing temperature, and large number of annealing cycles. The ampoule containing the samples is placed in direct contact with the graphite heating tube which helps in increasing the heating and cooling rates of the annealing cycle. To maintain Hg overpressure, Hg is placed in the sample holder, instead of in the ampoule to avoid Hg condensation. The best results were obtained by cycling the annealing temperature between 290°C and 350°C. Anneals were performed by using 32, 64, 128 and 256 cycles. We obtained an etch pit density (EPD) as low as 1 × 10 6  cm −2 . Lower EPD was not achieved either by increasing annealing temperature or number of annealing cycles. Through secondary ion mass spectroscopy analysis, we observed very little inter-diffusion of Cd across the MCT/CdTe interface for the 128 cycle annealing. These results show promise in bridging the gap in the device performance between the MCT material grown on CdTe/Si and CdZnTe substrates.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s11664-014-3542-2</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2015-05, Vol.44 (5), p.1321-1326
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_1668003308
source SpringerLink Journals - AutoHoldings
subjects Annealing
Characterization and Evaluation of Materials
Chemistry and Materials Science
Diffusion
Electronics and Microelectronics
Instrumentation
Low temperature physics
Materials Science
Optical and Electronic Materials
Solid State Physics
Thermal cycling
title Low Temperature, Rapid Thermal Cycle Annealing of HgCdTe Grown on CdTe/Si
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T18%3A11%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Temperature,%20Rapid%20Thermal%20Cycle%20Annealing%20of%20HgCdTe%20Grown%20on%20CdTe/Si&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Simingalam,%20Sina&rft.date=2015-05-01&rft.volume=44&rft.issue=5&rft.spage=1321&rft.epage=1326&rft.pages=1321-1326&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-014-3542-2&rft_dat=%3Cproquest_cross%3E3641862451%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1668003308&rft_id=info:pmid/&rfr_iscdi=true