High-Rate Quantum Low-Density Parity-Check Codes Assisted by Reliable Qubits
Quantum error correction is an important building block for reliable quantum information processing. A challenging hurdle in the theory of quantum error correction is that it is significantly more difficult to design error-correcting codes with desirable properties for quantum information processing...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2015-04, Vol.61 (4), p.1860-1878 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1878 |
---|---|
container_issue | 4 |
container_start_page | 1860 |
container_title | IEEE transactions on information theory |
container_volume | 61 |
creator | Fujiwara, Yuichiro Gruner, Alexander Vandendriessche, Peter |
description | Quantum error correction is an important building block for reliable quantum information processing. A challenging hurdle in the theory of quantum error correction is that it is significantly more difficult to design error-correcting codes with desirable properties for quantum information processing than for traditional digital communications and computation. A typical obstacle to constructing a variety of strong quantum error-correcting codes is the complicated restrictions imposed on the structure of a code. Recently, promising solutions to this problem have been proposed in quantum information science, where in principle any binary linear code can be turned into a quantum error-correcting code by assuming a small number of reliable quantum bits. This paper studies how best to take advantage of these latest ideas to construct desirable quantum error-correcting codes of very high information rate. Our methods exploit structured high-rate low-density parity-check codes available in the classical domain and provide quantum analogues that inherit their characteristic low decoding complexity and high error correction performance even at moderate code lengths. Our approach to designing high-rate quantum error-correcting codes also allows for making direct use of other major syndrome decoding methods for linear codes, making it possible to deal with a situation where promising quantum analogues of low-density parity-check codes are difficult to find. |
doi_str_mv | 10.1109/TIT.2015.2398436 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1666837098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7027863</ieee_id><sourcerecordid>3636332291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-dfec63ef700841d50d679f4de06469bb553e9d470e21e206375e3db8b2f92cf63</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFb3gpuA66l33jPLEh8tBNRS10OSubGpbVMzCdJ_b0rF1eHC-c6Fj5BbBhPGwD0s58sJB6YmXDgrhT4jI6aUoU4reU5GAMxSJ6W9JFcxrodTKsZHJJvVnyu6yDtM3vt81_XbJGt-6CPuYt0dkre8HYKmKyy_krQJGJNpjHXsMCTFIVngps6LzZEt6i5ek4sq30S8-csx-Xh-WqYzmr2-zNNpRksJsqOhwlILrAyAlSwoCNq4SgYELbUrCqUEuiANIGfIQQujUITCFrxyvKy0GJP70-6-bb57jJ1fN327G156prW2woCzQwtOrbJtYmyx8vu23ubtwTPwR2d-cOaPzvyfswG5OyE1Iv7XDXBjtRC_ofBmug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666837098</pqid></control><display><type>article</type><title>High-Rate Quantum Low-Density Parity-Check Codes Assisted by Reliable Qubits</title><source>IEEE Electronic Library (IEL)</source><creator>Fujiwara, Yuichiro ; Gruner, Alexander ; Vandendriessche, Peter</creator><creatorcontrib>Fujiwara, Yuichiro ; Gruner, Alexander ; Vandendriessche, Peter</creatorcontrib><description>Quantum error correction is an important building block for reliable quantum information processing. A challenging hurdle in the theory of quantum error correction is that it is significantly more difficult to design error-correcting codes with desirable properties for quantum information processing than for traditional digital communications and computation. A typical obstacle to constructing a variety of strong quantum error-correcting codes is the complicated restrictions imposed on the structure of a code. Recently, promising solutions to this problem have been proposed in quantum information science, where in principle any binary linear code can be turned into a quantum error-correcting code by assuming a small number of reliable quantum bits. This paper studies how best to take advantage of these latest ideas to construct desirable quantum error-correcting codes of very high information rate. Our methods exploit structured high-rate low-density parity-check codes available in the classical domain and provide quantum analogues that inherit their characteristic low decoding complexity and high error correction performance even at moderate code lengths. Our approach to designing high-rate quantum error-correcting codes also allows for making direct use of other major syndrome decoding methods for linear codes, making it possible to deal with a situation where promising quantum analogues of low-density parity-check codes are difficult to find.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2015.2398436</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coding theory ; combinatorial design ; entanglement-assisted quantum error-correcting code ; Error correction & detection ; Error correction codes ; Information processing ; Information theory ; Linear codes ; Low density parity check codes ; low-density paritycheck code ; Noise measurement ; Parity check codes ; Quantum entanglement ; Quantum error correction ; Vectors</subject><ispartof>IEEE transactions on information theory, 2015-04, Vol.61 (4), p.1860-1878</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-dfec63ef700841d50d679f4de06469bb553e9d470e21e206375e3db8b2f92cf63</citedby><cites>FETCH-LOGICAL-c404t-dfec63ef700841d50d679f4de06469bb553e9d470e21e206375e3db8b2f92cf63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7027863$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7027863$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fujiwara, Yuichiro</creatorcontrib><creatorcontrib>Gruner, Alexander</creatorcontrib><creatorcontrib>Vandendriessche, Peter</creatorcontrib><title>High-Rate Quantum Low-Density Parity-Check Codes Assisted by Reliable Qubits</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Quantum error correction is an important building block for reliable quantum information processing. A challenging hurdle in the theory of quantum error correction is that it is significantly more difficult to design error-correcting codes with desirable properties for quantum information processing than for traditional digital communications and computation. A typical obstacle to constructing a variety of strong quantum error-correcting codes is the complicated restrictions imposed on the structure of a code. Recently, promising solutions to this problem have been proposed in quantum information science, where in principle any binary linear code can be turned into a quantum error-correcting code by assuming a small number of reliable quantum bits. This paper studies how best to take advantage of these latest ideas to construct desirable quantum error-correcting codes of very high information rate. Our methods exploit structured high-rate low-density parity-check codes available in the classical domain and provide quantum analogues that inherit their characteristic low decoding complexity and high error correction performance even at moderate code lengths. Our approach to designing high-rate quantum error-correcting codes also allows for making direct use of other major syndrome decoding methods for linear codes, making it possible to deal with a situation where promising quantum analogues of low-density parity-check codes are difficult to find.</description><subject>Coding theory</subject><subject>combinatorial design</subject><subject>entanglement-assisted quantum error-correcting code</subject><subject>Error correction & detection</subject><subject>Error correction codes</subject><subject>Information processing</subject><subject>Information theory</subject><subject>Linear codes</subject><subject>Low density parity check codes</subject><subject>low-density paritycheck code</subject><subject>Noise measurement</subject><subject>Parity check codes</subject><subject>Quantum entanglement</subject><subject>Quantum error correction</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhQdRsFb3gpuA66l33jPLEh8tBNRS10OSubGpbVMzCdJ_b0rF1eHC-c6Fj5BbBhPGwD0s58sJB6YmXDgrhT4jI6aUoU4reU5GAMxSJ6W9JFcxrodTKsZHJJvVnyu6yDtM3vt81_XbJGt-6CPuYt0dkre8HYKmKyy_krQJGJNpjHXsMCTFIVngps6LzZEt6i5ek4sq30S8-csx-Xh-WqYzmr2-zNNpRksJsqOhwlILrAyAlSwoCNq4SgYELbUrCqUEuiANIGfIQQujUITCFrxyvKy0GJP70-6-bb57jJ1fN327G156prW2woCzQwtOrbJtYmyx8vu23ubtwTPwR2d-cOaPzvyfswG5OyE1Iv7XDXBjtRC_ofBmug</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Fujiwara, Yuichiro</creator><creator>Gruner, Alexander</creator><creator>Vandendriessche, Peter</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201504</creationdate><title>High-Rate Quantum Low-Density Parity-Check Codes Assisted by Reliable Qubits</title><author>Fujiwara, Yuichiro ; Gruner, Alexander ; Vandendriessche, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-dfec63ef700841d50d679f4de06469bb553e9d470e21e206375e3db8b2f92cf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Coding theory</topic><topic>combinatorial design</topic><topic>entanglement-assisted quantum error-correcting code</topic><topic>Error correction & detection</topic><topic>Error correction codes</topic><topic>Information processing</topic><topic>Information theory</topic><topic>Linear codes</topic><topic>Low density parity check codes</topic><topic>low-density paritycheck code</topic><topic>Noise measurement</topic><topic>Parity check codes</topic><topic>Quantum entanglement</topic><topic>Quantum error correction</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujiwara, Yuichiro</creatorcontrib><creatorcontrib>Gruner, Alexander</creatorcontrib><creatorcontrib>Vandendriessche, Peter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fujiwara, Yuichiro</au><au>Gruner, Alexander</au><au>Vandendriessche, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Rate Quantum Low-Density Parity-Check Codes Assisted by Reliable Qubits</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2015-04</date><risdate>2015</risdate><volume>61</volume><issue>4</issue><spage>1860</spage><epage>1878</epage><pages>1860-1878</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Quantum error correction is an important building block for reliable quantum information processing. A challenging hurdle in the theory of quantum error correction is that it is significantly more difficult to design error-correcting codes with desirable properties for quantum information processing than for traditional digital communications and computation. A typical obstacle to constructing a variety of strong quantum error-correcting codes is the complicated restrictions imposed on the structure of a code. Recently, promising solutions to this problem have been proposed in quantum information science, where in principle any binary linear code can be turned into a quantum error-correcting code by assuming a small number of reliable quantum bits. This paper studies how best to take advantage of these latest ideas to construct desirable quantum error-correcting codes of very high information rate. Our methods exploit structured high-rate low-density parity-check codes available in the classical domain and provide quantum analogues that inherit their characteristic low decoding complexity and high error correction performance even at moderate code lengths. Our approach to designing high-rate quantum error-correcting codes also allows for making direct use of other major syndrome decoding methods for linear codes, making it possible to deal with a situation where promising quantum analogues of low-density parity-check codes are difficult to find.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2015.2398436</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2015-04, Vol.61 (4), p.1860-1878 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_1666837098 |
source | IEEE Electronic Library (IEL) |
subjects | Coding theory combinatorial design entanglement-assisted quantum error-correcting code Error correction & detection Error correction codes Information processing Information theory Linear codes Low density parity check codes low-density paritycheck code Noise measurement Parity check codes Quantum entanglement Quantum error correction Vectors |
title | High-Rate Quantum Low-Density Parity-Check Codes Assisted by Reliable Qubits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T11%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Rate%20Quantum%20Low-Density%20Parity-Check%20Codes%20Assisted%20by%20Reliable%20Qubits&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Fujiwara,%20Yuichiro&rft.date=2015-04&rft.volume=61&rft.issue=4&rft.spage=1860&rft.epage=1878&rft.pages=1860-1878&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2015.2398436&rft_dat=%3Cproquest_RIE%3E3636332291%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1666837098&rft_id=info:pmid/&rft_ieee_id=7027863&rfr_iscdi=true |