High-Rate Quantum Low-Density Parity-Check Codes Assisted by Reliable Qubits

Quantum error correction is an important building block for reliable quantum information processing. A challenging hurdle in the theory of quantum error correction is that it is significantly more difficult to design error-correcting codes with desirable properties for quantum information processing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2015-04, Vol.61 (4), p.1860-1878
Hauptverfasser: Fujiwara, Yuichiro, Gruner, Alexander, Vandendriessche, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1878
container_issue 4
container_start_page 1860
container_title IEEE transactions on information theory
container_volume 61
creator Fujiwara, Yuichiro
Gruner, Alexander
Vandendriessche, Peter
description Quantum error correction is an important building block for reliable quantum information processing. A challenging hurdle in the theory of quantum error correction is that it is significantly more difficult to design error-correcting codes with desirable properties for quantum information processing than for traditional digital communications and computation. A typical obstacle to constructing a variety of strong quantum error-correcting codes is the complicated restrictions imposed on the structure of a code. Recently, promising solutions to this problem have been proposed in quantum information science, where in principle any binary linear code can be turned into a quantum error-correcting code by assuming a small number of reliable quantum bits. This paper studies how best to take advantage of these latest ideas to construct desirable quantum error-correcting codes of very high information rate. Our methods exploit structured high-rate low-density parity-check codes available in the classical domain and provide quantum analogues that inherit their characteristic low decoding complexity and high error correction performance even at moderate code lengths. Our approach to designing high-rate quantum error-correcting codes also allows for making direct use of other major syndrome decoding methods for linear codes, making it possible to deal with a situation where promising quantum analogues of low-density parity-check codes are difficult to find.
doi_str_mv 10.1109/TIT.2015.2398436
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1666837098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7027863</ieee_id><sourcerecordid>3636332291</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-dfec63ef700841d50d679f4de06469bb553e9d470e21e206375e3db8b2f92cf63</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFb3gpuA66l33jPLEh8tBNRS10OSubGpbVMzCdJ_b0rF1eHC-c6Fj5BbBhPGwD0s58sJB6YmXDgrhT4jI6aUoU4reU5GAMxSJ6W9JFcxrodTKsZHJJvVnyu6yDtM3vt81_XbJGt-6CPuYt0dkre8HYKmKyy_krQJGJNpjHXsMCTFIVngps6LzZEt6i5ek4sq30S8-csx-Xh-WqYzmr2-zNNpRksJsqOhwlILrAyAlSwoCNq4SgYELbUrCqUEuiANIGfIQQujUITCFrxyvKy0GJP70-6-bb57jJ1fN327G156prW2woCzQwtOrbJtYmyx8vu23ubtwTPwR2d-cOaPzvyfswG5OyE1Iv7XDXBjtRC_ofBmug</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1666837098</pqid></control><display><type>article</type><title>High-Rate Quantum Low-Density Parity-Check Codes Assisted by Reliable Qubits</title><source>IEEE Electronic Library (IEL)</source><creator>Fujiwara, Yuichiro ; Gruner, Alexander ; Vandendriessche, Peter</creator><creatorcontrib>Fujiwara, Yuichiro ; Gruner, Alexander ; Vandendriessche, Peter</creatorcontrib><description>Quantum error correction is an important building block for reliable quantum information processing. A challenging hurdle in the theory of quantum error correction is that it is significantly more difficult to design error-correcting codes with desirable properties for quantum information processing than for traditional digital communications and computation. A typical obstacle to constructing a variety of strong quantum error-correcting codes is the complicated restrictions imposed on the structure of a code. Recently, promising solutions to this problem have been proposed in quantum information science, where in principle any binary linear code can be turned into a quantum error-correcting code by assuming a small number of reliable quantum bits. This paper studies how best to take advantage of these latest ideas to construct desirable quantum error-correcting codes of very high information rate. Our methods exploit structured high-rate low-density parity-check codes available in the classical domain and provide quantum analogues that inherit their characteristic low decoding complexity and high error correction performance even at moderate code lengths. Our approach to designing high-rate quantum error-correcting codes also allows for making direct use of other major syndrome decoding methods for linear codes, making it possible to deal with a situation where promising quantum analogues of low-density parity-check codes are difficult to find.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2015.2398436</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Coding theory ; combinatorial design ; entanglement-assisted quantum error-correcting code ; Error correction &amp; detection ; Error correction codes ; Information processing ; Information theory ; Linear codes ; Low density parity check codes ; low-density paritycheck code ; Noise measurement ; Parity check codes ; Quantum entanglement ; Quantum error correction ; Vectors</subject><ispartof>IEEE transactions on information theory, 2015-04, Vol.61 (4), p.1860-1878</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Apr 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-dfec63ef700841d50d679f4de06469bb553e9d470e21e206375e3db8b2f92cf63</citedby><cites>FETCH-LOGICAL-c404t-dfec63ef700841d50d679f4de06469bb553e9d470e21e206375e3db8b2f92cf63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7027863$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7027863$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fujiwara, Yuichiro</creatorcontrib><creatorcontrib>Gruner, Alexander</creatorcontrib><creatorcontrib>Vandendriessche, Peter</creatorcontrib><title>High-Rate Quantum Low-Density Parity-Check Codes Assisted by Reliable Qubits</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>Quantum error correction is an important building block for reliable quantum information processing. A challenging hurdle in the theory of quantum error correction is that it is significantly more difficult to design error-correcting codes with desirable properties for quantum information processing than for traditional digital communications and computation. A typical obstacle to constructing a variety of strong quantum error-correcting codes is the complicated restrictions imposed on the structure of a code. Recently, promising solutions to this problem have been proposed in quantum information science, where in principle any binary linear code can be turned into a quantum error-correcting code by assuming a small number of reliable quantum bits. This paper studies how best to take advantage of these latest ideas to construct desirable quantum error-correcting codes of very high information rate. Our methods exploit structured high-rate low-density parity-check codes available in the classical domain and provide quantum analogues that inherit their characteristic low decoding complexity and high error correction performance even at moderate code lengths. Our approach to designing high-rate quantum error-correcting codes also allows for making direct use of other major syndrome decoding methods for linear codes, making it possible to deal with a situation where promising quantum analogues of low-density parity-check codes are difficult to find.</description><subject>Coding theory</subject><subject>combinatorial design</subject><subject>entanglement-assisted quantum error-correcting code</subject><subject>Error correction &amp; detection</subject><subject>Error correction codes</subject><subject>Information processing</subject><subject>Information theory</subject><subject>Linear codes</subject><subject>Low density parity check codes</subject><subject>low-density paritycheck code</subject><subject>Noise measurement</subject><subject>Parity check codes</subject><subject>Quantum entanglement</subject><subject>Quantum error correction</subject><subject>Vectors</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AUhQdRsFb3gpuA66l33jPLEh8tBNRS10OSubGpbVMzCdJ_b0rF1eHC-c6Fj5BbBhPGwD0s58sJB6YmXDgrhT4jI6aUoU4reU5GAMxSJ6W9JFcxrodTKsZHJJvVnyu6yDtM3vt81_XbJGt-6CPuYt0dkre8HYKmKyy_krQJGJNpjHXsMCTFIVngps6LzZEt6i5ek4sq30S8-csx-Xh-WqYzmr2-zNNpRksJsqOhwlILrAyAlSwoCNq4SgYELbUrCqUEuiANIGfIQQujUITCFrxyvKy0GJP70-6-bb57jJ1fN327G156prW2woCzQwtOrbJtYmyx8vu23ubtwTPwR2d-cOaPzvyfswG5OyE1Iv7XDXBjtRC_ofBmug</recordid><startdate>201504</startdate><enddate>201504</enddate><creator>Fujiwara, Yuichiro</creator><creator>Gruner, Alexander</creator><creator>Vandendriessche, Peter</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201504</creationdate><title>High-Rate Quantum Low-Density Parity-Check Codes Assisted by Reliable Qubits</title><author>Fujiwara, Yuichiro ; Gruner, Alexander ; Vandendriessche, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-dfec63ef700841d50d679f4de06469bb553e9d470e21e206375e3db8b2f92cf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Coding theory</topic><topic>combinatorial design</topic><topic>entanglement-assisted quantum error-correcting code</topic><topic>Error correction &amp; detection</topic><topic>Error correction codes</topic><topic>Information processing</topic><topic>Information theory</topic><topic>Linear codes</topic><topic>Low density parity check codes</topic><topic>low-density paritycheck code</topic><topic>Noise measurement</topic><topic>Parity check codes</topic><topic>Quantum entanglement</topic><topic>Quantum error correction</topic><topic>Vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujiwara, Yuichiro</creatorcontrib><creatorcontrib>Gruner, Alexander</creatorcontrib><creatorcontrib>Vandendriessche, Peter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fujiwara, Yuichiro</au><au>Gruner, Alexander</au><au>Vandendriessche, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Rate Quantum Low-Density Parity-Check Codes Assisted by Reliable Qubits</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2015-04</date><risdate>2015</risdate><volume>61</volume><issue>4</issue><spage>1860</spage><epage>1878</epage><pages>1860-1878</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>Quantum error correction is an important building block for reliable quantum information processing. A challenging hurdle in the theory of quantum error correction is that it is significantly more difficult to design error-correcting codes with desirable properties for quantum information processing than for traditional digital communications and computation. A typical obstacle to constructing a variety of strong quantum error-correcting codes is the complicated restrictions imposed on the structure of a code. Recently, promising solutions to this problem have been proposed in quantum information science, where in principle any binary linear code can be turned into a quantum error-correcting code by assuming a small number of reliable quantum bits. This paper studies how best to take advantage of these latest ideas to construct desirable quantum error-correcting codes of very high information rate. Our methods exploit structured high-rate low-density parity-check codes available in the classical domain and provide quantum analogues that inherit their characteristic low decoding complexity and high error correction performance even at moderate code lengths. Our approach to designing high-rate quantum error-correcting codes also allows for making direct use of other major syndrome decoding methods for linear codes, making it possible to deal with a situation where promising quantum analogues of low-density parity-check codes are difficult to find.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2015.2398436</doi><tpages>19</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2015-04, Vol.61 (4), p.1860-1878
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_1666837098
source IEEE Electronic Library (IEL)
subjects Coding theory
combinatorial design
entanglement-assisted quantum error-correcting code
Error correction & detection
Error correction codes
Information processing
Information theory
Linear codes
Low density parity check codes
low-density paritycheck code
Noise measurement
Parity check codes
Quantum entanglement
Quantum error correction
Vectors
title High-Rate Quantum Low-Density Parity-Check Codes Assisted by Reliable Qubits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T11%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Rate%20Quantum%20Low-Density%20Parity-Check%20Codes%20Assisted%20by%20Reliable%20Qubits&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Fujiwara,%20Yuichiro&rft.date=2015-04&rft.volume=61&rft.issue=4&rft.spage=1860&rft.epage=1878&rft.pages=1860-1878&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2015.2398436&rft_dat=%3Cproquest_RIE%3E3636332291%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1666837098&rft_id=info:pmid/&rft_ieee_id=7027863&rfr_iscdi=true