Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13

[Display omitted] •High yield of propene in the ETP process obtained on H-SSZ-13.•Improved lifetime in the ETP reaction achieved on dealuminated H-SSZ-13.•Polyalkylnaphthalenes as key active organic species during ETP.•Accumulation of large polycyclic aromatics leads the deactivation of H-SSZ-13. Se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of catalysis 2014-05, Vol.314, p.10-20
Hauptverfasser: Dai, Weili, Sun, Xiaoming, Tang, Bo, Wu, Guangjun, Li, Landong, Guan, Naijia, Hunger, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20
container_issue
container_start_page 10
container_title Journal of catalysis
container_volume 314
creator Dai, Weili
Sun, Xiaoming
Tang, Bo
Wu, Guangjun
Li, Landong
Guan, Naijia
Hunger, Michael
description [Display omitted] •High yield of propene in the ETP process obtained on H-SSZ-13.•Improved lifetime in the ETP reaction achieved on dealuminated H-SSZ-13.•Polyalkylnaphthalenes as key active organic species during ETP.•Accumulation of large polycyclic aromatics leads the deactivation of H-SSZ-13. Several types of microporous molecular sieves with similar nSi/nAl ratios (except for SAPO-34) and different pore structures were prepared and applied as ethene-to-propene (ETP) catalysts. H-SSZ-13 zeolite consisting of chabazite cages connected via 8-ring windows possessed the highest adsorption capacity for ethene and exhibited the best activity in the ETP conversion. The decreasing amount of Brønsted acid sites after dealumination of H-SSZ-13 caused a prolonged lifetime of the catalyst in the ETP reaction. The reaction mechanism and deactivation behavior of H-SSZ-13 catalysts during the ETP process were investigated by in situ FT-IR, UV/Vis, GC–MS, TGA and 1H MAS NMR methods. Ethene was rapidly oligomerized and converted into naphthalene-based carbenium ions, playing a significant role in the ETP reaction. The accumulation of these species lead to the formation of polycyclic aromatics, which are responsible for a total blocking of H-SSZ-13 pores, and cause the deactivation of the catalyst.
doi_str_mv 10.1016/j.jcat.2014.03.006
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1661997088</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021951714000591</els_id><sourcerecordid>3620051211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c461t-245ceef1c0b07b2855be8a0d439e286c15a3b82e479f3c625e41e310b62007123</originalsourceid><addsrcrecordid>eNp9UMFqHDEMNaWBbNP-QE4DpUdPJY_tGUMvJTTZQiCHbXLoxXi8msbD7nhrTwKbr483G3IMCEmIp_ekx9g5Qo2A-vtYj97NtQCUNTQ1gP7AFggGuNBGfmQLAIHcKGxP2aecRwBEpboFu7mjFIZ9mP5V8z1VW_L3bgp5W8XhZUAlTcTnyHcp7kpb-Tg9UsohTlWJJ4qbMFO15KvVX47NZ3YyuE2mL6_1jN1e_vpzseTXN1e_L35ecy81zlxI5YkG9NBD24tOqZ46B2vZGBKd9qhc03eCZGuGxmuhSCI1CL0WAC2K5ox9PfKWs_4_UJ7tGB_SVCQtao3GtNB1BSWOKJ9izokGu0th69LeItiDcXa0B-PswTgLjS3GlaVvr9Que7cZkpt8yG-bopNGSqMK7scRR-XPx0DJZh9o8rQOifxs1zG8J_MMHOCB0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661997088</pqid></control><display><type>article</type><title>Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Dai, Weili ; Sun, Xiaoming ; Tang, Bo ; Wu, Guangjun ; Li, Landong ; Guan, Naijia ; Hunger, Michael</creator><creatorcontrib>Dai, Weili ; Sun, Xiaoming ; Tang, Bo ; Wu, Guangjun ; Li, Landong ; Guan, Naijia ; Hunger, Michael</creatorcontrib><description>[Display omitted] •High yield of propene in the ETP process obtained on H-SSZ-13.•Improved lifetime in the ETP reaction achieved on dealuminated H-SSZ-13.•Polyalkylnaphthalenes as key active organic species during ETP.•Accumulation of large polycyclic aromatics leads the deactivation of H-SSZ-13. Several types of microporous molecular sieves with similar nSi/nAl ratios (except for SAPO-34) and different pore structures were prepared and applied as ethene-to-propene (ETP) catalysts. H-SSZ-13 zeolite consisting of chabazite cages connected via 8-ring windows possessed the highest adsorption capacity for ethene and exhibited the best activity in the ETP conversion. The decreasing amount of Brønsted acid sites after dealumination of H-SSZ-13 caused a prolonged lifetime of the catalyst in the ETP reaction. The reaction mechanism and deactivation behavior of H-SSZ-13 catalysts during the ETP process were investigated by in situ FT-IR, UV/Vis, GC–MS, TGA and 1H MAS NMR methods. Ethene was rapidly oligomerized and converted into naphthalene-based carbenium ions, playing a significant role in the ETP reaction. The accumulation of these species lead to the formation of polycyclic aromatics, which are responsible for a total blocking of H-SSZ-13 pores, and cause the deactivation of the catalyst.</description><identifier>ISSN: 0021-9517</identifier><identifier>EISSN: 1090-2694</identifier><identifier>DOI: 10.1016/j.jcat.2014.03.006</identifier><identifier>CODEN: JCTLA5</identifier><language>eng</language><publisher>Amsterdam: Elsevier Inc</publisher><subject>Bioaccumulation ; Brønsted acid sites ; Catalysis ; Chemistry ; Ethene-to-propene conversion ; Exact sciences and technology ; Framework dealumination ; General and physical chemistry ; Ion-exchange ; Molecular biology ; Naphthalene-based carbenium ions ; Pore size ; SSZ-13 ; Surface physical chemistry ; Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry ; Zeolites ; Zeolites: preparations and properties</subject><ispartof>Journal of catalysis, 2014-05, Vol.314, p.10-20</ispartof><rights>2014 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c461t-245ceef1c0b07b2855be8a0d439e286c15a3b82e479f3c625e41e310b62007123</citedby><cites>FETCH-LOGICAL-c461t-245ceef1c0b07b2855be8a0d439e286c15a3b82e479f3c625e41e310b62007123</cites><orcidid>0000-0003-0998-4061</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcat.2014.03.006$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28494495$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Dai, Weili</creatorcontrib><creatorcontrib>Sun, Xiaoming</creatorcontrib><creatorcontrib>Tang, Bo</creatorcontrib><creatorcontrib>Wu, Guangjun</creatorcontrib><creatorcontrib>Li, Landong</creatorcontrib><creatorcontrib>Guan, Naijia</creatorcontrib><creatorcontrib>Hunger, Michael</creatorcontrib><title>Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13</title><title>Journal of catalysis</title><description>[Display omitted] •High yield of propene in the ETP process obtained on H-SSZ-13.•Improved lifetime in the ETP reaction achieved on dealuminated H-SSZ-13.•Polyalkylnaphthalenes as key active organic species during ETP.•Accumulation of large polycyclic aromatics leads the deactivation of H-SSZ-13. Several types of microporous molecular sieves with similar nSi/nAl ratios (except for SAPO-34) and different pore structures were prepared and applied as ethene-to-propene (ETP) catalysts. H-SSZ-13 zeolite consisting of chabazite cages connected via 8-ring windows possessed the highest adsorption capacity for ethene and exhibited the best activity in the ETP conversion. The decreasing amount of Brønsted acid sites after dealumination of H-SSZ-13 caused a prolonged lifetime of the catalyst in the ETP reaction. The reaction mechanism and deactivation behavior of H-SSZ-13 catalysts during the ETP process were investigated by in situ FT-IR, UV/Vis, GC–MS, TGA and 1H MAS NMR methods. Ethene was rapidly oligomerized and converted into naphthalene-based carbenium ions, playing a significant role in the ETP reaction. The accumulation of these species lead to the formation of polycyclic aromatics, which are responsible for a total blocking of H-SSZ-13 pores, and cause the deactivation of the catalyst.</description><subject>Bioaccumulation</subject><subject>Brønsted acid sites</subject><subject>Catalysis</subject><subject>Chemistry</subject><subject>Ethene-to-propene conversion</subject><subject>Exact sciences and technology</subject><subject>Framework dealumination</subject><subject>General and physical chemistry</subject><subject>Ion-exchange</subject><subject>Molecular biology</subject><subject>Naphthalene-based carbenium ions</subject><subject>Pore size</subject><subject>SSZ-13</subject><subject>Surface physical chemistry</subject><subject>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</subject><subject>Zeolites</subject><subject>Zeolites: preparations and properties</subject><issn>0021-9517</issn><issn>1090-2694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNp9UMFqHDEMNaWBbNP-QE4DpUdPJY_tGUMvJTTZQiCHbXLoxXi8msbD7nhrTwKbr483G3IMCEmIp_ekx9g5Qo2A-vtYj97NtQCUNTQ1gP7AFggGuNBGfmQLAIHcKGxP2aecRwBEpboFu7mjFIZ9mP5V8z1VW_L3bgp5W8XhZUAlTcTnyHcp7kpb-Tg9UsohTlWJJ4qbMFO15KvVX47NZ3YyuE2mL6_1jN1e_vpzseTXN1e_L35ecy81zlxI5YkG9NBD24tOqZ46B2vZGBKd9qhc03eCZGuGxmuhSCI1CL0WAC2K5ox9PfKWs_4_UJ7tGB_SVCQtao3GtNB1BSWOKJ9izokGu0th69LeItiDcXa0B-PswTgLjS3GlaVvr9Que7cZkpt8yG-bopNGSqMK7scRR-XPx0DJZh9o8rQOifxs1zG8J_MMHOCB0w</recordid><startdate>20140501</startdate><enddate>20140501</enddate><creator>Dai, Weili</creator><creator>Sun, Xiaoming</creator><creator>Tang, Bo</creator><creator>Wu, Guangjun</creator><creator>Li, Landong</creator><creator>Guan, Naijia</creator><creator>Hunger, Michael</creator><general>Elsevier Inc</general><general>Elsevier</general><general>Elsevier BV</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-0998-4061</orcidid></search><sort><creationdate>20140501</creationdate><title>Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13</title><author>Dai, Weili ; Sun, Xiaoming ; Tang, Bo ; Wu, Guangjun ; Li, Landong ; Guan, Naijia ; Hunger, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c461t-245ceef1c0b07b2855be8a0d439e286c15a3b82e479f3c625e41e310b62007123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Bioaccumulation</topic><topic>Brønsted acid sites</topic><topic>Catalysis</topic><topic>Chemistry</topic><topic>Ethene-to-propene conversion</topic><topic>Exact sciences and technology</topic><topic>Framework dealumination</topic><topic>General and physical chemistry</topic><topic>Ion-exchange</topic><topic>Molecular biology</topic><topic>Naphthalene-based carbenium ions</topic><topic>Pore size</topic><topic>SSZ-13</topic><topic>Surface physical chemistry</topic><topic>Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry</topic><topic>Zeolites</topic><topic>Zeolites: preparations and properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dai, Weili</creatorcontrib><creatorcontrib>Sun, Xiaoming</creatorcontrib><creatorcontrib>Tang, Bo</creatorcontrib><creatorcontrib>Wu, Guangjun</creatorcontrib><creatorcontrib>Li, Landong</creatorcontrib><creatorcontrib>Guan, Naijia</creatorcontrib><creatorcontrib>Hunger, Michael</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dai, Weili</au><au>Sun, Xiaoming</au><au>Tang, Bo</au><au>Wu, Guangjun</au><au>Li, Landong</au><au>Guan, Naijia</au><au>Hunger, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13</atitle><jtitle>Journal of catalysis</jtitle><date>2014-05-01</date><risdate>2014</risdate><volume>314</volume><spage>10</spage><epage>20</epage><pages>10-20</pages><issn>0021-9517</issn><eissn>1090-2694</eissn><coden>JCTLA5</coden><abstract>[Display omitted] •High yield of propene in the ETP process obtained on H-SSZ-13.•Improved lifetime in the ETP reaction achieved on dealuminated H-SSZ-13.•Polyalkylnaphthalenes as key active organic species during ETP.•Accumulation of large polycyclic aromatics leads the deactivation of H-SSZ-13. Several types of microporous molecular sieves with similar nSi/nAl ratios (except for SAPO-34) and different pore structures were prepared and applied as ethene-to-propene (ETP) catalysts. H-SSZ-13 zeolite consisting of chabazite cages connected via 8-ring windows possessed the highest adsorption capacity for ethene and exhibited the best activity in the ETP conversion. The decreasing amount of Brønsted acid sites after dealumination of H-SSZ-13 caused a prolonged lifetime of the catalyst in the ETP reaction. The reaction mechanism and deactivation behavior of H-SSZ-13 catalysts during the ETP process were investigated by in situ FT-IR, UV/Vis, GC–MS, TGA and 1H MAS NMR methods. Ethene was rapidly oligomerized and converted into naphthalene-based carbenium ions, playing a significant role in the ETP reaction. The accumulation of these species lead to the formation of polycyclic aromatics, which are responsible for a total blocking of H-SSZ-13 pores, and cause the deactivation of the catalyst.</abstract><cop>Amsterdam</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcat.2014.03.006</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-0998-4061</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9517
ispartof Journal of catalysis, 2014-05, Vol.314, p.10-20
issn 0021-9517
1090-2694
language eng
recordid cdi_proquest_journals_1661997088
source Elsevier ScienceDirect Journals Complete
subjects Bioaccumulation
Brønsted acid sites
Catalysis
Chemistry
Ethene-to-propene conversion
Exact sciences and technology
Framework dealumination
General and physical chemistry
Ion-exchange
Molecular biology
Naphthalene-based carbenium ions
Pore size
SSZ-13
Surface physical chemistry
Theory of reactions, general kinetics. Catalysis. Nomenclature, chemical documentation, computer chemistry
Zeolites
Zeolites: preparations and properties
title Verifying the mechanism of the ethene-to-propene conversion on zeolite H-SSZ-13
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T13%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Verifying%20the%20mechanism%20of%20the%20ethene-to-propene%20conversion%20on%20zeolite%20H-SSZ-13&rft.jtitle=Journal%20of%20catalysis&rft.au=Dai,%20Weili&rft.date=2014-05-01&rft.volume=314&rft.spage=10&rft.epage=20&rft.pages=10-20&rft.issn=0021-9517&rft.eissn=1090-2694&rft.coden=JCTLA5&rft_id=info:doi/10.1016/j.jcat.2014.03.006&rft_dat=%3Cproquest_cross%3E3620051211%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661997088&rft_id=info:pmid/&rft_els_id=S0021951714000591&rfr_iscdi=true