An extended hazard model with longitudinal covariates
In clinical trials and other medical studies, it has become increasingly common to observe simultaneously an event time of interest and longitudinal covariates. In the literature, joint modelling approaches have been employed to analyse both survival and longitudinal processes and to investigate the...
Gespeichert in:
Veröffentlicht in: | Biometrika 2015-03, Vol.102 (1), p.135-150 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 150 |
---|---|
container_issue | 1 |
container_start_page | 135 |
container_title | Biometrika |
container_volume | 102 |
creator | TSENG, Y. K. SU, Y. R. MAO, M. WANG, J. L. |
description | In clinical trials and other medical studies, it has become increasingly common to observe simultaneously an event time of interest and longitudinal covariates. In the literature, joint modelling approaches have been employed to analyse both survival and longitudinal processes and to investigate their association. However, these approaches focus mostly on developing adaptive and flexible longitudinal processes based on a prespecified survival model, most commonly the Cox proportional hazards model. In this paper, we propose a general class of semiparametric hazard regression models, referred to as the extended hazard model, for the survival component. This class includes two popular survival models, the Cox proportional hazards model and the accelerated failure time model, as special cases. The proposed model is flexible for modelling event data, and its nested structure facilitates model selection for the survival component through likelihood ratio tests. A pseudo joint likelihood approach is proposed for estimating the unknown parameters and components via a Monte Carlo EM algorithm. Asymptotic theory for the estimators is developed together with theory for the semiparametric likelihood ratio tests. The performance of the procedure is demonstrated through simulation studies. A case study featuring data from a Taiwanese HIV/AIDS cohort study further illustrates the usefulness of the extended hazard model. |
doi_str_mv | 10.1093/biomet/asu058 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1661350377</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43305642</jstor_id><sourcerecordid>43305642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-17533b1a8dcd5ff2817780c435ae2b7506310eeb0a5ec7fab29343d0635b24a63</originalsourceid><addsrcrecordid>eNpNkEtLxDAUhYMoOI4u3RfEZZ2b3Dw6y2HQURhwo-uQNqnT0mnGJPX16-1QF64u5_JxOHyEXFO4o7DERdn4vUsLEwcQxQmZUS55joLCKZkBgMyRc35OLmJsj1EKOSNi1WfuK7neOpvtzI8JNtt767rss0m7rPP9W5MG2_Smyyr_YUJjkouX5Kw2XXRXf3dOXh_uX9aP-fZ587RebfOKLUXKqRKIJTWFrayoa1ZQpQqoOArjWKkESKTgXAlGuErVpmRL5GjHtygZNxLn5GbqPQT_PriYdOuHMG6JmkpJUQAqNVL5RFXBxxhcrQ-h2ZvwrSnooxk9mdGTmZG_nfg2Jh_-wwxBaY4IQnKGvxE2Y4Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661350377</pqid></control><display><type>article</type><title>An extended hazard model with longitudinal covariates</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>TSENG, Y. K. ; SU, Y. R. ; MAO, M. ; WANG, J. L.</creator><creatorcontrib>TSENG, Y. K. ; SU, Y. R. ; MAO, M. ; WANG, J. L.</creatorcontrib><description>In clinical trials and other medical studies, it has become increasingly common to observe simultaneously an event time of interest and longitudinal covariates. In the literature, joint modelling approaches have been employed to analyse both survival and longitudinal processes and to investigate their association. However, these approaches focus mostly on developing adaptive and flexible longitudinal processes based on a prespecified survival model, most commonly the Cox proportional hazards model. In this paper, we propose a general class of semiparametric hazard regression models, referred to as the extended hazard model, for the survival component. This class includes two popular survival models, the Cox proportional hazards model and the accelerated failure time model, as special cases. The proposed model is flexible for modelling event data, and its nested structure facilitates model selection for the survival component through likelihood ratio tests. A pseudo joint likelihood approach is proposed for estimating the unknown parameters and components via a Monte Carlo EM algorithm. Asymptotic theory for the estimators is developed together with theory for the semiparametric likelihood ratio tests. The performance of the procedure is demonstrated through simulation studies. A case study featuring data from a Taiwanese HIV/AIDS cohort study further illustrates the usefulness of the extended hazard model.</description><identifier>ISSN: 0006-3444</identifier><identifier>EISSN: 1464-3510</identifier><identifier>DOI: 10.1093/biomet/asu058</identifier><identifier>CODEN: BIOKAX</identifier><language>eng</language><publisher>Oxford: Biometrika Trust, University College London</publisher><subject>Algorithms ; Asymptotic methods ; Estimating techniques ; Mathematical models ; Monte Carlo simulation ; Regression analysis ; Studies</subject><ispartof>Biometrika, 2015-03, Vol.102 (1), p.135-150</ispartof><rights>2015 Biometrika Trust</rights><rights>Copyright Oxford Publishing Limited(England) Mar 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-17533b1a8dcd5ff2817780c435ae2b7506310eeb0a5ec7fab29343d0635b24a63</citedby><cites>FETCH-LOGICAL-c295t-17533b1a8dcd5ff2817780c435ae2b7506310eeb0a5ec7fab29343d0635b24a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43305642$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43305642$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>TSENG, Y. K.</creatorcontrib><creatorcontrib>SU, Y. R.</creatorcontrib><creatorcontrib>MAO, M.</creatorcontrib><creatorcontrib>WANG, J. L.</creatorcontrib><title>An extended hazard model with longitudinal covariates</title><title>Biometrika</title><description>In clinical trials and other medical studies, it has become increasingly common to observe simultaneously an event time of interest and longitudinal covariates. In the literature, joint modelling approaches have been employed to analyse both survival and longitudinal processes and to investigate their association. However, these approaches focus mostly on developing adaptive and flexible longitudinal processes based on a prespecified survival model, most commonly the Cox proportional hazards model. In this paper, we propose a general class of semiparametric hazard regression models, referred to as the extended hazard model, for the survival component. This class includes two popular survival models, the Cox proportional hazards model and the accelerated failure time model, as special cases. The proposed model is flexible for modelling event data, and its nested structure facilitates model selection for the survival component through likelihood ratio tests. A pseudo joint likelihood approach is proposed for estimating the unknown parameters and components via a Monte Carlo EM algorithm. Asymptotic theory for the estimators is developed together with theory for the semiparametric likelihood ratio tests. The performance of the procedure is demonstrated through simulation studies. A case study featuring data from a Taiwanese HIV/AIDS cohort study further illustrates the usefulness of the extended hazard model.</description><subject>Algorithms</subject><subject>Asymptotic methods</subject><subject>Estimating techniques</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Regression analysis</subject><subject>Studies</subject><issn>0006-3444</issn><issn>1464-3510</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLxDAUhYMoOI4u3RfEZZ2b3Dw6y2HQURhwo-uQNqnT0mnGJPX16-1QF64u5_JxOHyEXFO4o7DERdn4vUsLEwcQxQmZUS55joLCKZkBgMyRc35OLmJsj1EKOSNi1WfuK7neOpvtzI8JNtt767rss0m7rPP9W5MG2_Smyyr_YUJjkouX5Kw2XXRXf3dOXh_uX9aP-fZ587RebfOKLUXKqRKIJTWFrayoa1ZQpQqoOArjWKkESKTgXAlGuErVpmRL5GjHtygZNxLn5GbqPQT_PriYdOuHMG6JmkpJUQAqNVL5RFXBxxhcrQ-h2ZvwrSnooxk9mdGTmZG_nfg2Jh_-wwxBaY4IQnKGvxE2Y4Y</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>TSENG, Y. K.</creator><creator>SU, Y. R.</creator><creator>MAO, M.</creator><creator>WANG, J. L.</creator><general>Biometrika Trust, University College London</general><general>Oxford Publishing Limited (England)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20150301</creationdate><title>An extended hazard model with longitudinal covariates</title><author>TSENG, Y. K. ; SU, Y. R. ; MAO, M. ; WANG, J. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-17533b1a8dcd5ff2817780c435ae2b7506310eeb0a5ec7fab29343d0635b24a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Asymptotic methods</topic><topic>Estimating techniques</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Regression analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TSENG, Y. K.</creatorcontrib><creatorcontrib>SU, Y. R.</creatorcontrib><creatorcontrib>MAO, M.</creatorcontrib><creatorcontrib>WANG, J. L.</creatorcontrib><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Biometrika</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TSENG, Y. K.</au><au>SU, Y. R.</au><au>MAO, M.</au><au>WANG, J. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extended hazard model with longitudinal covariates</atitle><jtitle>Biometrika</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>102</volume><issue>1</issue><spage>135</spage><epage>150</epage><pages>135-150</pages><issn>0006-3444</issn><eissn>1464-3510</eissn><coden>BIOKAX</coden><abstract>In clinical trials and other medical studies, it has become increasingly common to observe simultaneously an event time of interest and longitudinal covariates. In the literature, joint modelling approaches have been employed to analyse both survival and longitudinal processes and to investigate their association. However, these approaches focus mostly on developing adaptive and flexible longitudinal processes based on a prespecified survival model, most commonly the Cox proportional hazards model. In this paper, we propose a general class of semiparametric hazard regression models, referred to as the extended hazard model, for the survival component. This class includes two popular survival models, the Cox proportional hazards model and the accelerated failure time model, as special cases. The proposed model is flexible for modelling event data, and its nested structure facilitates model selection for the survival component through likelihood ratio tests. A pseudo joint likelihood approach is proposed for estimating the unknown parameters and components via a Monte Carlo EM algorithm. Asymptotic theory for the estimators is developed together with theory for the semiparametric likelihood ratio tests. The performance of the procedure is demonstrated through simulation studies. A case study featuring data from a Taiwanese HIV/AIDS cohort study further illustrates the usefulness of the extended hazard model.</abstract><cop>Oxford</cop><pub>Biometrika Trust, University College London</pub><doi>10.1093/biomet/asu058</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3444 |
ispartof | Biometrika, 2015-03, Vol.102 (1), p.135-150 |
issn | 0006-3444 1464-3510 |
language | eng |
recordid | cdi_proquest_journals_1661350377 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Algorithms Asymptotic methods Estimating techniques Mathematical models Monte Carlo simulation Regression analysis Studies |
title | An extended hazard model with longitudinal covariates |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T16%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extended%20hazard%20model%20with%20longitudinal%20covariates&rft.jtitle=Biometrika&rft.au=TSENG,%20Y.%20K.&rft.date=2015-03-01&rft.volume=102&rft.issue=1&rft.spage=135&rft.epage=150&rft.pages=135-150&rft.issn=0006-3444&rft.eissn=1464-3510&rft.coden=BIOKAX&rft_id=info:doi/10.1093/biomet/asu058&rft_dat=%3Cjstor_proqu%3E43305642%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661350377&rft_id=info:pmid/&rft_jstor_id=43305642&rfr_iscdi=true |