Citrus black spot detection using hyperspectral imaging
This paper describes the development of a hyperspectral imaging approach for identifying fruits infected with citrus black spot (CBS). Hyperspectral images were taken of healthy fruit and those with CBS symptoms or other potentially confounding peel conditions such as greasy spot, wind scar, or mela...
Gespeichert in:
Veröffentlicht in: | International journal of agricultural and biological engineering 2014-12, Vol.7 (6), p.20 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 20 |
container_title | International journal of agricultural and biological engineering |
container_volume | 7 |
creator | Kim, Daegwan Burks, Thomas F Ritenour, Mark A Qin, Jianwei |
description | This paper describes the development of a hyperspectral imaging approach for identifying fruits infected with citrus black spot (CBS). Hyperspectral images were taken of healthy fruit and those with CBS symptoms or other potentially confounding peel conditions such as greasy spot, wind scar, or melanose. Spectral angle mapper (SAM) and spectral information divergence (SID) hyperspectral analysis approaches were used to classify fruit samples into two classes: CBS or non-CBS. The classification accuracy for CBS with SAM approach was 97.90%, and 97.14% with SID. The combination of hyperspectral images and two classification approaches (SID and SAM) have proven to be effective in recognizing CBS in the presence of other potentially confounding fruit peel conditions. The study result can be a reference for the non-destructive detection of fruits infected with citrus black spot. |
doi_str_mv | 10.3965/j.ijabe.20140706.004 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1661322413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3617879871</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-5bd91e62db8c00b8384ca9dad7701ac4fdf1b7148b95e8405d716105aa5889a53</originalsourceid><addsrcrecordid>eNo9jUtLxDAURoMoOI7-AxcB1633NjevpRRfMOBG10PSpGNrbWuTLvz3DiiuzsdZfIexa4RSWCVv-7LrnY9lBUigQZUAdMI2aAUVSsjq9H8TnbOLlHoARUbIDdN1l5c1cT-45oOneco8xByb3E0jX1M3Hvj79xyXNB_d4gbefbrD0V6ys9YNKV79ccveHu5f66di9_L4XN_tihmNyIX0wWJUVfCmAfBGGGqcDS5oDegaakOLXiMZb2U0BDJoVAjSOWmMdVJs2c3v77xMX2tMed9P6zIek3tUCkVVEQrxAya5Si4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661322413</pqid></control><display><type>article</type><title>Citrus black spot detection using hyperspectral imaging</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Daegwan ; Burks, Thomas F ; Ritenour, Mark A ; Qin, Jianwei</creator><creatorcontrib>Kim, Daegwan ; Burks, Thomas F ; Ritenour, Mark A ; Qin, Jianwei</creatorcontrib><description>This paper describes the development of a hyperspectral imaging approach for identifying fruits infected with citrus black spot (CBS). Hyperspectral images were taken of healthy fruit and those with CBS symptoms or other potentially confounding peel conditions such as greasy spot, wind scar, or melanose. Spectral angle mapper (SAM) and spectral information divergence (SID) hyperspectral analysis approaches were used to classify fruit samples into two classes: CBS or non-CBS. The classification accuracy for CBS with SAM approach was 97.90%, and 97.14% with SID. The combination of hyperspectral images and two classification approaches (SID and SAM) have proven to be effective in recognizing CBS in the presence of other potentially confounding fruit peel conditions. The study result can be a reference for the non-destructive detection of fruits infected with citrus black spot.</description><identifier>ISSN: 1934-6344</identifier><identifier>EISSN: 1934-6352</identifier><identifier>DOI: 10.3965/j.ijabe.20140706.004</identifier><language>eng</language><publisher>Beijing: International Journal of Agricultural and Biological Engineering (IJABE)</publisher><subject>Algorithms ; Citrus fruits ; Classification ; Discriminant analysis ; Methods ; Power supply ; Software ; Vision systems ; Wavelet transforms</subject><ispartof>International journal of agricultural and biological engineering, 2014-12, Vol.7 (6), p.20</ispartof><rights>Copyright International Journal of Agricultural and Biological Engineering (IJABE) Dec 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Daegwan</creatorcontrib><creatorcontrib>Burks, Thomas F</creatorcontrib><creatorcontrib>Ritenour, Mark A</creatorcontrib><creatorcontrib>Qin, Jianwei</creatorcontrib><title>Citrus black spot detection using hyperspectral imaging</title><title>International journal of agricultural and biological engineering</title><description>This paper describes the development of a hyperspectral imaging approach for identifying fruits infected with citrus black spot (CBS). Hyperspectral images were taken of healthy fruit and those with CBS symptoms or other potentially confounding peel conditions such as greasy spot, wind scar, or melanose. Spectral angle mapper (SAM) and spectral information divergence (SID) hyperspectral analysis approaches were used to classify fruit samples into two classes: CBS or non-CBS. The classification accuracy for CBS with SAM approach was 97.90%, and 97.14% with SID. The combination of hyperspectral images and two classification approaches (SID and SAM) have proven to be effective in recognizing CBS in the presence of other potentially confounding fruit peel conditions. The study result can be a reference for the non-destructive detection of fruits infected with citrus black spot.</description><subject>Algorithms</subject><subject>Citrus fruits</subject><subject>Classification</subject><subject>Discriminant analysis</subject><subject>Methods</subject><subject>Power supply</subject><subject>Software</subject><subject>Vision systems</subject><subject>Wavelet transforms</subject><issn>1934-6344</issn><issn>1934-6352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9jUtLxDAURoMoOI7-AxcB1633NjevpRRfMOBG10PSpGNrbWuTLvz3DiiuzsdZfIexa4RSWCVv-7LrnY9lBUigQZUAdMI2aAUVSsjq9H8TnbOLlHoARUbIDdN1l5c1cT-45oOneco8xByb3E0jX1M3Hvj79xyXNB_d4gbefbrD0V6ys9YNKV79ccveHu5f66di9_L4XN_tihmNyIX0wWJUVfCmAfBGGGqcDS5oDegaakOLXiMZb2U0BDJoVAjSOWmMdVJs2c3v77xMX2tMed9P6zIek3tUCkVVEQrxAya5Si4</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Kim, Daegwan</creator><creator>Burks, Thomas F</creator><creator>Ritenour, Mark A</creator><creator>Qin, Jianwei</creator><general>International Journal of Agricultural and Biological Engineering (IJABE)</general><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BVBZV</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20141201</creationdate><title>Citrus black spot detection using hyperspectral imaging</title><author>Kim, Daegwan ; Burks, Thomas F ; Ritenour, Mark A ; Qin, Jianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-5bd91e62db8c00b8384ca9dad7701ac4fdf1b7148b95e8405d716105aa5889a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Citrus fruits</topic><topic>Classification</topic><topic>Discriminant analysis</topic><topic>Methods</topic><topic>Power supply</topic><topic>Software</topic><topic>Vision systems</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Daegwan</creatorcontrib><creatorcontrib>Burks, Thomas F</creatorcontrib><creatorcontrib>Ritenour, Mark A</creatorcontrib><creatorcontrib>Qin, Jianwei</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>East & South Asia Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>International journal of agricultural and biological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Daegwan</au><au>Burks, Thomas F</au><au>Ritenour, Mark A</au><au>Qin, Jianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Citrus black spot detection using hyperspectral imaging</atitle><jtitle>International journal of agricultural and biological engineering</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>7</volume><issue>6</issue><spage>20</spage><pages>20-</pages><issn>1934-6344</issn><eissn>1934-6352</eissn><abstract>This paper describes the development of a hyperspectral imaging approach for identifying fruits infected with citrus black spot (CBS). Hyperspectral images were taken of healthy fruit and those with CBS symptoms or other potentially confounding peel conditions such as greasy spot, wind scar, or melanose. Spectral angle mapper (SAM) and spectral information divergence (SID) hyperspectral analysis approaches were used to classify fruit samples into two classes: CBS or non-CBS. The classification accuracy for CBS with SAM approach was 97.90%, and 97.14% with SID. The combination of hyperspectral images and two classification approaches (SID and SAM) have proven to be effective in recognizing CBS in the presence of other potentially confounding fruit peel conditions. The study result can be a reference for the non-destructive detection of fruits infected with citrus black spot.</abstract><cop>Beijing</cop><pub>International Journal of Agricultural and Biological Engineering (IJABE)</pub><doi>10.3965/j.ijabe.20140706.004</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1934-6344 |
ispartof | International journal of agricultural and biological engineering, 2014-12, Vol.7 (6), p.20 |
issn | 1934-6344 1934-6352 |
language | eng |
recordid | cdi_proquest_journals_1661322413 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Algorithms Citrus fruits Classification Discriminant analysis Methods Power supply Software Vision systems Wavelet transforms |
title | Citrus black spot detection using hyperspectral imaging |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Citrus%20black%20spot%20detection%20using%20hyperspectral%20imaging&rft.jtitle=International%20journal%20of%20agricultural%20and%20biological%20engineering&rft.au=Kim,%20Daegwan&rft.date=2014-12-01&rft.volume=7&rft.issue=6&rft.spage=20&rft.pages=20-&rft.issn=1934-6344&rft.eissn=1934-6352&rft_id=info:doi/10.3965/j.ijabe.20140706.004&rft_dat=%3Cproquest%3E3617879871%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661322413&rft_id=info:pmid/&rfr_iscdi=true |