Citrus black spot detection using hyperspectral imaging

This paper describes the development of a hyperspectral imaging approach for identifying fruits infected with citrus black spot (CBS). Hyperspectral images were taken of healthy fruit and those with CBS symptoms or other potentially confounding peel conditions such as greasy spot, wind scar, or mela...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of agricultural and biological engineering 2014-12, Vol.7 (6), p.20
Hauptverfasser: Kim, Daegwan, Burks, Thomas F, Ritenour, Mark A, Qin, Jianwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 20
container_title International journal of agricultural and biological engineering
container_volume 7
creator Kim, Daegwan
Burks, Thomas F
Ritenour, Mark A
Qin, Jianwei
description This paper describes the development of a hyperspectral imaging approach for identifying fruits infected with citrus black spot (CBS). Hyperspectral images were taken of healthy fruit and those with CBS symptoms or other potentially confounding peel conditions such as greasy spot, wind scar, or melanose. Spectral angle mapper (SAM) and spectral information divergence (SID) hyperspectral analysis approaches were used to classify fruit samples into two classes: CBS or non-CBS. The classification accuracy for CBS with SAM approach was 97.90%, and 97.14% with SID. The combination of hyperspectral images and two classification approaches (SID and SAM) have proven to be effective in recognizing CBS in the presence of other potentially confounding fruit peel conditions. The study result can be a reference for the non-destructive detection of fruits infected with citrus black spot.
doi_str_mv 10.3965/j.ijabe.20140706.004
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1661322413</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3617879871</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-5bd91e62db8c00b8384ca9dad7701ac4fdf1b7148b95e8405d716105aa5889a53</originalsourceid><addsrcrecordid>eNo9jUtLxDAURoMoOI7-AxcB1633NjevpRRfMOBG10PSpGNrbWuTLvz3DiiuzsdZfIexa4RSWCVv-7LrnY9lBUigQZUAdMI2aAUVSsjq9H8TnbOLlHoARUbIDdN1l5c1cT-45oOneco8xByb3E0jX1M3Hvj79xyXNB_d4gbefbrD0V6ys9YNKV79ccveHu5f66di9_L4XN_tihmNyIX0wWJUVfCmAfBGGGqcDS5oDegaakOLXiMZb2U0BDJoVAjSOWmMdVJs2c3v77xMX2tMed9P6zIek3tUCkVVEQrxAya5Si4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1661322413</pqid></control><display><type>article</type><title>Citrus black spot detection using hyperspectral imaging</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kim, Daegwan ; Burks, Thomas F ; Ritenour, Mark A ; Qin, Jianwei</creator><creatorcontrib>Kim, Daegwan ; Burks, Thomas F ; Ritenour, Mark A ; Qin, Jianwei</creatorcontrib><description>This paper describes the development of a hyperspectral imaging approach for identifying fruits infected with citrus black spot (CBS). Hyperspectral images were taken of healthy fruit and those with CBS symptoms or other potentially confounding peel conditions such as greasy spot, wind scar, or melanose. Spectral angle mapper (SAM) and spectral information divergence (SID) hyperspectral analysis approaches were used to classify fruit samples into two classes: CBS or non-CBS. The classification accuracy for CBS with SAM approach was 97.90%, and 97.14% with SID. The combination of hyperspectral images and two classification approaches (SID and SAM) have proven to be effective in recognizing CBS in the presence of other potentially confounding fruit peel conditions. The study result can be a reference for the non-destructive detection of fruits infected with citrus black spot.</description><identifier>ISSN: 1934-6344</identifier><identifier>EISSN: 1934-6352</identifier><identifier>DOI: 10.3965/j.ijabe.20140706.004</identifier><language>eng</language><publisher>Beijing: International Journal of Agricultural and Biological Engineering (IJABE)</publisher><subject>Algorithms ; Citrus fruits ; Classification ; Discriminant analysis ; Methods ; Power supply ; Software ; Vision systems ; Wavelet transforms</subject><ispartof>International journal of agricultural and biological engineering, 2014-12, Vol.7 (6), p.20</ispartof><rights>Copyright International Journal of Agricultural and Biological Engineering (IJABE) Dec 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Kim, Daegwan</creatorcontrib><creatorcontrib>Burks, Thomas F</creatorcontrib><creatorcontrib>Ritenour, Mark A</creatorcontrib><creatorcontrib>Qin, Jianwei</creatorcontrib><title>Citrus black spot detection using hyperspectral imaging</title><title>International journal of agricultural and biological engineering</title><description>This paper describes the development of a hyperspectral imaging approach for identifying fruits infected with citrus black spot (CBS). Hyperspectral images were taken of healthy fruit and those with CBS symptoms or other potentially confounding peel conditions such as greasy spot, wind scar, or melanose. Spectral angle mapper (SAM) and spectral information divergence (SID) hyperspectral analysis approaches were used to classify fruit samples into two classes: CBS or non-CBS. The classification accuracy for CBS with SAM approach was 97.90%, and 97.14% with SID. The combination of hyperspectral images and two classification approaches (SID and SAM) have proven to be effective in recognizing CBS in the presence of other potentially confounding fruit peel conditions. The study result can be a reference for the non-destructive detection of fruits infected with citrus black spot.</description><subject>Algorithms</subject><subject>Citrus fruits</subject><subject>Classification</subject><subject>Discriminant analysis</subject><subject>Methods</subject><subject>Power supply</subject><subject>Software</subject><subject>Vision systems</subject><subject>Wavelet transforms</subject><issn>1934-6344</issn><issn>1934-6352</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNo9jUtLxDAURoMoOI7-AxcB1633NjevpRRfMOBG10PSpGNrbWuTLvz3DiiuzsdZfIexa4RSWCVv-7LrnY9lBUigQZUAdMI2aAUVSsjq9H8TnbOLlHoARUbIDdN1l5c1cT-45oOneco8xByb3E0jX1M3Hvj79xyXNB_d4gbefbrD0V6ys9YNKV79ccveHu5f66di9_L4XN_tihmNyIX0wWJUVfCmAfBGGGqcDS5oDegaakOLXiMZb2U0BDJoVAjSOWmMdVJs2c3v77xMX2tMed9P6zIek3tUCkVVEQrxAya5Si4</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Kim, Daegwan</creator><creator>Burks, Thomas F</creator><creator>Ritenour, Mark A</creator><creator>Qin, Jianwei</creator><general>International Journal of Agricultural and Biological Engineering (IJABE)</general><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BVBZV</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>RC3</scope><scope>SOI</scope></search><sort><creationdate>20141201</creationdate><title>Citrus black spot detection using hyperspectral imaging</title><author>Kim, Daegwan ; Burks, Thomas F ; Ritenour, Mark A ; Qin, Jianwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-5bd91e62db8c00b8384ca9dad7701ac4fdf1b7148b95e8405d716105aa5889a53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Citrus fruits</topic><topic>Classification</topic><topic>Discriminant analysis</topic><topic>Methods</topic><topic>Power supply</topic><topic>Software</topic><topic>Vision systems</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Daegwan</creatorcontrib><creatorcontrib>Burks, Thomas F</creatorcontrib><creatorcontrib>Ritenour, Mark A</creatorcontrib><creatorcontrib>Qin, Jianwei</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>East &amp; South Asia Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><jtitle>International journal of agricultural and biological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Daegwan</au><au>Burks, Thomas F</au><au>Ritenour, Mark A</au><au>Qin, Jianwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Citrus black spot detection using hyperspectral imaging</atitle><jtitle>International journal of agricultural and biological engineering</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>7</volume><issue>6</issue><spage>20</spage><pages>20-</pages><issn>1934-6344</issn><eissn>1934-6352</eissn><abstract>This paper describes the development of a hyperspectral imaging approach for identifying fruits infected with citrus black spot (CBS). Hyperspectral images were taken of healthy fruit and those with CBS symptoms or other potentially confounding peel conditions such as greasy spot, wind scar, or melanose. Spectral angle mapper (SAM) and spectral information divergence (SID) hyperspectral analysis approaches were used to classify fruit samples into two classes: CBS or non-CBS. The classification accuracy for CBS with SAM approach was 97.90%, and 97.14% with SID. The combination of hyperspectral images and two classification approaches (SID and SAM) have proven to be effective in recognizing CBS in the presence of other potentially confounding fruit peel conditions. The study result can be a reference for the non-destructive detection of fruits infected with citrus black spot.</abstract><cop>Beijing</cop><pub>International Journal of Agricultural and Biological Engineering (IJABE)</pub><doi>10.3965/j.ijabe.20140706.004</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1934-6344
ispartof International journal of agricultural and biological engineering, 2014-12, Vol.7 (6), p.20
issn 1934-6344
1934-6352
language eng
recordid cdi_proquest_journals_1661322413
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Citrus fruits
Classification
Discriminant analysis
Methods
Power supply
Software
Vision systems
Wavelet transforms
title Citrus black spot detection using hyperspectral imaging
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T03%3A57%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Citrus%20black%20spot%20detection%20using%20hyperspectral%20imaging&rft.jtitle=International%20journal%20of%20agricultural%20and%20biological%20engineering&rft.au=Kim,%20Daegwan&rft.date=2014-12-01&rft.volume=7&rft.issue=6&rft.spage=20&rft.pages=20-&rft.issn=1934-6344&rft.eissn=1934-6352&rft_id=info:doi/10.3965/j.ijabe.20140706.004&rft_dat=%3Cproquest%3E3617879871%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1661322413&rft_id=info:pmid/&rfr_iscdi=true