A new method of convergence acceleration of series expansion for analytic functions in the complex domain

This paper proposes a new method of convergence acceleration of series expansion of complex functions which are analytic on and inside the unit circle in the complex plane. This class of complex functions may have some singularities outside the unit circle, which dominate convergence of series expan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japan journal of industrial and applied mathematics 2015-03, Vol.32 (1), p.95-117
Hauptverfasser: Murashige, Sunao, Tanaka, Ken’ichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 117
container_issue 1
container_start_page 95
container_title Japan journal of industrial and applied mathematics
container_volume 32
creator Murashige, Sunao
Tanaka, Ken’ichiro
description This paper proposes a new method of convergence acceleration of series expansion of complex functions which are analytic on and inside the unit circle in the complex plane. This class of complex functions may have some singularities outside the unit circle, which dominate convergence of series expansion. In the proposed method, the singular points are moved away from the origin using conformal mapping, and the function is expanded using a sequence of polynomials orthogonalized on the boundary of the mapped complex domain. The decay rate of coefficients of the orthogonal polynomial expansion can be related to the convergence region in a similar form to the Cauchy–Hadamard formula for power series. Using this relation, we quantitatively evaluate and maximize the convergence rate of the improved series. Numerical examples demonstrate that the proposed method is effective for slow convergent series, and may converge faster than Padé approximants.
doi_str_mv 10.1007/s13160-014-0159-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1660892644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3615721991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-c97ec4cfa0ea92a58f02b27b8fc1493c923fbea71557ea8aee6d500087175ca33</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4C7gevRkLrksS_EGBTcK7kKanrRTZpIxmWrt0ztDXbhxcQicfP_P4SPkmsEtAxB3iRWMQwasHKZS2eGETJjkMlOFeD8lE1CMZwKgOicXKW0BSi4Zm5B6Rj1-0Rb7TVjR4KgN_hPjGr1FaqzFBqPp6-DHv4SxxkRx3xmfxp0LkRpvmu--ttTtvB3JRGtP-w0OVW3X4J6uQmtqf0nOnGkSXv2-U_L2cP86f8oWL4_P89kis6XifWaVQFtaZwCNyk0lHeTLXCyls6xUhVV54ZZoBKsqgUYaRL6qAEAKJiprimJKbo69XQwfO0y93oZdHI5MmnEOUuW8LAeKHSkbQ0oRne5i3Zr4rRno0ag-GtWDUT0a1Ychkx8zaWD9GuOf5n9DP9Ibe1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660892644</pqid></control><display><type>article</type><title>A new method of convergence acceleration of series expansion for analytic functions in the complex domain</title><source>Springer Nature - Complete Springer Journals</source><creator>Murashige, Sunao ; Tanaka, Ken’ichiro</creator><creatorcontrib>Murashige, Sunao ; Tanaka, Ken’ichiro</creatorcontrib><description>This paper proposes a new method of convergence acceleration of series expansion of complex functions which are analytic on and inside the unit circle in the complex plane. This class of complex functions may have some singularities outside the unit circle, which dominate convergence of series expansion. In the proposed method, the singular points are moved away from the origin using conformal mapping, and the function is expanded using a sequence of polynomials orthogonalized on the boundary of the mapped complex domain. The decay rate of coefficients of the orthogonal polynomial expansion can be related to the convergence region in a similar form to the Cauchy–Hadamard formula for power series. Using this relation, we quantitatively evaluate and maximize the convergence rate of the improved series. Numerical examples demonstrate that the proposed method is effective for slow convergent series, and may converge faster than Padé approximants.</description><identifier>ISSN: 0916-7005</identifier><identifier>EISSN: 1868-937X</identifier><identifier>DOI: 10.1007/s13160-014-0159-z</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Japan journal of industrial and applied mathematics, 2015-03, Vol.32 (1), p.95-117</ispartof><rights>The JJIAM Publishing Committee and Springer Japan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-c97ec4cfa0ea92a58f02b27b8fc1493c923fbea71557ea8aee6d500087175ca33</citedby><cites>FETCH-LOGICAL-c496t-c97ec4cfa0ea92a58f02b27b8fc1493c923fbea71557ea8aee6d500087175ca33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13160-014-0159-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13160-014-0159-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Murashige, Sunao</creatorcontrib><creatorcontrib>Tanaka, Ken’ichiro</creatorcontrib><title>A new method of convergence acceleration of series expansion for analytic functions in the complex domain</title><title>Japan journal of industrial and applied mathematics</title><addtitle>Japan J. Indust. Appl. Math</addtitle><description>This paper proposes a new method of convergence acceleration of series expansion of complex functions which are analytic on and inside the unit circle in the complex plane. This class of complex functions may have some singularities outside the unit circle, which dominate convergence of series expansion. In the proposed method, the singular points are moved away from the origin using conformal mapping, and the function is expanded using a sequence of polynomials orthogonalized on the boundary of the mapped complex domain. The decay rate of coefficients of the orthogonal polynomial expansion can be related to the convergence region in a similar form to the Cauchy–Hadamard formula for power series. Using this relation, we quantitatively evaluate and maximize the convergence rate of the improved series. Numerical examples demonstrate that the proposed method is effective for slow convergent series, and may converge faster than Padé approximants.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0916-7005</issn><issn>1868-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4C7gevRkLrksS_EGBTcK7kKanrRTZpIxmWrt0ztDXbhxcQicfP_P4SPkmsEtAxB3iRWMQwasHKZS2eGETJjkMlOFeD8lE1CMZwKgOicXKW0BSi4Zm5B6Rj1-0Rb7TVjR4KgN_hPjGr1FaqzFBqPp6-DHv4SxxkRx3xmfxp0LkRpvmu--ttTtvB3JRGtP-w0OVW3X4J6uQmtqf0nOnGkSXv2-U_L2cP86f8oWL4_P89kis6XifWaVQFtaZwCNyk0lHeTLXCyls6xUhVV54ZZoBKsqgUYaRL6qAEAKJiprimJKbo69XQwfO0y93oZdHI5MmnEOUuW8LAeKHSkbQ0oRne5i3Zr4rRno0ag-GtWDUT0a1Ychkx8zaWD9GuOf5n9DP9Ibe1w</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Murashige, Sunao</creator><creator>Tanaka, Ken’ichiro</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150301</creationdate><title>A new method of convergence acceleration of series expansion for analytic functions in the complex domain</title><author>Murashige, Sunao ; Tanaka, Ken’ichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-c97ec4cfa0ea92a58f02b27b8fc1493c923fbea71557ea8aee6d500087175ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murashige, Sunao</creatorcontrib><creatorcontrib>Tanaka, Ken’ichiro</creatorcontrib><collection>CrossRef</collection><jtitle>Japan journal of industrial and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murashige, Sunao</au><au>Tanaka, Ken’ichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new method of convergence acceleration of series expansion for analytic functions in the complex domain</atitle><jtitle>Japan journal of industrial and applied mathematics</jtitle><stitle>Japan J. Indust. Appl. Math</stitle><date>2015-03-01</date><risdate>2015</risdate><volume>32</volume><issue>1</issue><spage>95</spage><epage>117</epage><pages>95-117</pages><issn>0916-7005</issn><eissn>1868-937X</eissn><abstract>This paper proposes a new method of convergence acceleration of series expansion of complex functions which are analytic on and inside the unit circle in the complex plane. This class of complex functions may have some singularities outside the unit circle, which dominate convergence of series expansion. In the proposed method, the singular points are moved away from the origin using conformal mapping, and the function is expanded using a sequence of polynomials orthogonalized on the boundary of the mapped complex domain. The decay rate of coefficients of the orthogonal polynomial expansion can be related to the convergence region in a similar form to the Cauchy–Hadamard formula for power series. Using this relation, we quantitatively evaluate and maximize the convergence rate of the improved series. Numerical examples demonstrate that the proposed method is effective for slow convergent series, and may converge faster than Padé approximants.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s13160-014-0159-z</doi><tpages>23</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0916-7005
ispartof Japan journal of industrial and applied mathematics, 2015-03, Vol.32 (1), p.95-117
issn 0916-7005
1868-937X
language eng
recordid cdi_proquest_journals_1660892644
source Springer Nature - Complete Springer Journals
subjects Applications of Mathematics
Computational Mathematics and Numerical Analysis
Mathematics
Mathematics and Statistics
Original Paper
title A new method of convergence acceleration of series expansion for analytic functions in the complex domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20method%20of%20convergence%20acceleration%20of%20series%20expansion%20for%20analytic%20functions%20in%20the%20complex%20domain&rft.jtitle=Japan%20journal%20of%20industrial%20and%20applied%20mathematics&rft.au=Murashige,%20Sunao&rft.date=2015-03-01&rft.volume=32&rft.issue=1&rft.spage=95&rft.epage=117&rft.pages=95-117&rft.issn=0916-7005&rft.eissn=1868-937X&rft_id=info:doi/10.1007/s13160-014-0159-z&rft_dat=%3Cproquest_cross%3E3615721991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660892644&rft_id=info:pmid/&rfr_iscdi=true