A new method of convergence acceleration of series expansion for analytic functions in the complex domain
This paper proposes a new method of convergence acceleration of series expansion of complex functions which are analytic on and inside the unit circle in the complex plane. This class of complex functions may have some singularities outside the unit circle, which dominate convergence of series expan...
Gespeichert in:
Veröffentlicht in: | Japan journal of industrial and applied mathematics 2015-03, Vol.32 (1), p.95-117 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 117 |
---|---|
container_issue | 1 |
container_start_page | 95 |
container_title | Japan journal of industrial and applied mathematics |
container_volume | 32 |
creator | Murashige, Sunao Tanaka, Ken’ichiro |
description | This paper proposes a new method of convergence acceleration of series expansion of complex functions which are analytic on and inside the unit circle in the complex plane. This class of complex functions may have some singularities outside the unit circle, which dominate convergence of series expansion. In the proposed method, the singular points are moved away from the origin using conformal mapping, and the function is expanded using a sequence of polynomials orthogonalized on the boundary of the mapped complex domain. The decay rate of coefficients of the orthogonal polynomial expansion can be related to the convergence region in a similar form to the Cauchy–Hadamard formula for power series. Using this relation, we quantitatively evaluate and maximize the convergence rate of the improved series. Numerical examples demonstrate that the proposed method is effective for slow convergent series, and may converge faster than Padé approximants. |
doi_str_mv | 10.1007/s13160-014-0159-z |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1660892644</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3615721991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-c97ec4cfa0ea92a58f02b27b8fc1493c923fbea71557ea8aee6d500087175ca33</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKsP4C7gevRkLrksS_EGBTcK7kKanrRTZpIxmWrt0ztDXbhxcQicfP_P4SPkmsEtAxB3iRWMQwasHKZS2eGETJjkMlOFeD8lE1CMZwKgOicXKW0BSi4Zm5B6Rj1-0Rb7TVjR4KgN_hPjGr1FaqzFBqPp6-DHv4SxxkRx3xmfxp0LkRpvmu--ttTtvB3JRGtP-w0OVW3X4J6uQmtqf0nOnGkSXv2-U_L2cP86f8oWL4_P89kis6XifWaVQFtaZwCNyk0lHeTLXCyls6xUhVV54ZZoBKsqgUYaRL6qAEAKJiprimJKbo69XQwfO0y93oZdHI5MmnEOUuW8LAeKHSkbQ0oRne5i3Zr4rRno0ag-GtWDUT0a1Ychkx8zaWD9GuOf5n9DP9Ibe1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1660892644</pqid></control><display><type>article</type><title>A new method of convergence acceleration of series expansion for analytic functions in the complex domain</title><source>Springer Nature - Complete Springer Journals</source><creator>Murashige, Sunao ; Tanaka, Ken’ichiro</creator><creatorcontrib>Murashige, Sunao ; Tanaka, Ken’ichiro</creatorcontrib><description>This paper proposes a new method of convergence acceleration of series expansion of complex functions which are analytic on and inside the unit circle in the complex plane. This class of complex functions may have some singularities outside the unit circle, which dominate convergence of series expansion. In the proposed method, the singular points are moved away from the origin using conformal mapping, and the function is expanded using a sequence of polynomials orthogonalized on the boundary of the mapped complex domain. The decay rate of coefficients of the orthogonal polynomial expansion can be related to the convergence region in a similar form to the Cauchy–Hadamard formula for power series. Using this relation, we quantitatively evaluate and maximize the convergence rate of the improved series. Numerical examples demonstrate that the proposed method is effective for slow convergent series, and may converge faster than Padé approximants.</description><identifier>ISSN: 0916-7005</identifier><identifier>EISSN: 1868-937X</identifier><identifier>DOI: 10.1007/s13160-014-0159-z</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Mathematics ; Mathematics and Statistics ; Original Paper</subject><ispartof>Japan journal of industrial and applied mathematics, 2015-03, Vol.32 (1), p.95-117</ispartof><rights>The JJIAM Publishing Committee and Springer Japan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-c97ec4cfa0ea92a58f02b27b8fc1493c923fbea71557ea8aee6d500087175ca33</citedby><cites>FETCH-LOGICAL-c496t-c97ec4cfa0ea92a58f02b27b8fc1493c923fbea71557ea8aee6d500087175ca33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s13160-014-0159-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s13160-014-0159-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Murashige, Sunao</creatorcontrib><creatorcontrib>Tanaka, Ken’ichiro</creatorcontrib><title>A new method of convergence acceleration of series expansion for analytic functions in the complex domain</title><title>Japan journal of industrial and applied mathematics</title><addtitle>Japan J. Indust. Appl. Math</addtitle><description>This paper proposes a new method of convergence acceleration of series expansion of complex functions which are analytic on and inside the unit circle in the complex plane. This class of complex functions may have some singularities outside the unit circle, which dominate convergence of series expansion. In the proposed method, the singular points are moved away from the origin using conformal mapping, and the function is expanded using a sequence of polynomials orthogonalized on the boundary of the mapped complex domain. The decay rate of coefficients of the orthogonal polynomial expansion can be related to the convergence region in a similar form to the Cauchy–Hadamard formula for power series. Using this relation, we quantitatively evaluate and maximize the convergence rate of the improved series. Numerical examples demonstrate that the proposed method is effective for slow convergent series, and may converge faster than Padé approximants.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><issn>0916-7005</issn><issn>1868-937X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKsP4C7gevRkLrksS_EGBTcK7kKanrRTZpIxmWrt0ztDXbhxcQicfP_P4SPkmsEtAxB3iRWMQwasHKZS2eGETJjkMlOFeD8lE1CMZwKgOicXKW0BSi4Zm5B6Rj1-0Rb7TVjR4KgN_hPjGr1FaqzFBqPp6-DHv4SxxkRx3xmfxp0LkRpvmu--ttTtvB3JRGtP-w0OVW3X4J6uQmtqf0nOnGkSXv2-U_L2cP86f8oWL4_P89kis6XifWaVQFtaZwCNyk0lHeTLXCyls6xUhVV54ZZoBKsqgUYaRL6qAEAKJiprimJKbo69XQwfO0y93oZdHI5MmnEOUuW8LAeKHSkbQ0oRne5i3Zr4rRno0ag-GtWDUT0a1Ychkx8zaWD9GuOf5n9DP9Ibe1w</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Murashige, Sunao</creator><creator>Tanaka, Ken’ichiro</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150301</creationdate><title>A new method of convergence acceleration of series expansion for analytic functions in the complex domain</title><author>Murashige, Sunao ; Tanaka, Ken’ichiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-c97ec4cfa0ea92a58f02b27b8fc1493c923fbea71557ea8aee6d500087175ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murashige, Sunao</creatorcontrib><creatorcontrib>Tanaka, Ken’ichiro</creatorcontrib><collection>CrossRef</collection><jtitle>Japan journal of industrial and applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murashige, Sunao</au><au>Tanaka, Ken’ichiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new method of convergence acceleration of series expansion for analytic functions in the complex domain</atitle><jtitle>Japan journal of industrial and applied mathematics</jtitle><stitle>Japan J. Indust. Appl. Math</stitle><date>2015-03-01</date><risdate>2015</risdate><volume>32</volume><issue>1</issue><spage>95</spage><epage>117</epage><pages>95-117</pages><issn>0916-7005</issn><eissn>1868-937X</eissn><abstract>This paper proposes a new method of convergence acceleration of series expansion of complex functions which are analytic on and inside the unit circle in the complex plane. This class of complex functions may have some singularities outside the unit circle, which dominate convergence of series expansion. In the proposed method, the singular points are moved away from the origin using conformal mapping, and the function is expanded using a sequence of polynomials orthogonalized on the boundary of the mapped complex domain. The decay rate of coefficients of the orthogonal polynomial expansion can be related to the convergence region in a similar form to the Cauchy–Hadamard formula for power series. Using this relation, we quantitatively evaluate and maximize the convergence rate of the improved series. Numerical examples demonstrate that the proposed method is effective for slow convergent series, and may converge faster than Padé approximants.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><doi>10.1007/s13160-014-0159-z</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0916-7005 |
ispartof | Japan journal of industrial and applied mathematics, 2015-03, Vol.32 (1), p.95-117 |
issn | 0916-7005 1868-937X |
language | eng |
recordid | cdi_proquest_journals_1660892644 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Computational Mathematics and Numerical Analysis Mathematics Mathematics and Statistics Original Paper |
title | A new method of convergence acceleration of series expansion for analytic functions in the complex domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T17%3A26%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20method%20of%20convergence%20acceleration%20of%20series%20expansion%20for%20analytic%20functions%20in%20the%20complex%20domain&rft.jtitle=Japan%20journal%20of%20industrial%20and%20applied%20mathematics&rft.au=Murashige,%20Sunao&rft.date=2015-03-01&rft.volume=32&rft.issue=1&rft.spage=95&rft.epage=117&rft.pages=95-117&rft.issn=0916-7005&rft.eissn=1868-937X&rft_id=info:doi/10.1007/s13160-014-0159-z&rft_dat=%3Cproquest_cross%3E3615721991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1660892644&rft_id=info:pmid/&rfr_iscdi=true |