Simulation of stream flow components in a mountainous catchment in northern Thailand with SWAT, using the ANSELM calibration approach

Highland agriculture is intensifying rapidly in South‐East Asia, leading to alarmingly high applications of agrochemicals. Understanding the fate of these contaminants requires carefully planned monitoring programmes and, in most cases, accurate simulation of hydrological pathways into and through w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrological processes 2015-03, Vol.29 (6), p.1340-1352
Hauptverfasser: Bannwarth, M. A, Hugenschmidt, C, Sangchan, W, Lamers, M, Ingwersen, J, Ziegler, A. D, Streck, T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Highland agriculture is intensifying rapidly in South‐East Asia, leading to alarmingly high applications of agrochemicals. Understanding the fate of these contaminants requires carefully planned monitoring programmes and, in most cases, accurate simulation of hydrological pathways into and through water bodies. We simulate run‐off in a steep mountainous catchment in tropical South‐East Asia. To overcome calibration difficulties related to the mountainous topography, we introduce a new calibration method, named A Nash–Sutcliffe Efficiency Likelihood Match (ANSELM), that allows the assignment of optimal parameters to different hydrological response units in simulations of stream discharge with the Soil and Water Assessment Tool (SWAT) hydrological model. ANSELM performed better than the Parasol calibration tool built into SWAT in terms of model efficiency and computation time. In our simulation, the most sensitive model parameters were those related to base flow generation, surface run‐off generation, flow routing and soil moisture change. The coupling of SWAT with ANSELM yielded reasonable simulations of both wet‐season and dry‐season storm hydrographs. Nash–Sutcliffe model efficiencies for daily stream flow during two validation years were 0.77 and 0.87. These values are in the upper range or even higher than those reported for other SWAT model applications in temperate or tropical regions. The different flow components were realistically simulated by SWAT, and showed a similar behaviour in all the study years, despite inter‐annual climatic differences. The realistic partitioning of total stream flow into its contributing components will be an important factor for using this hydrological model to simulate solute transport in the future. Copyright © 2014 John Wiley & Sons, Ltd.
ISSN:0885-6087
1099-1085
DOI:10.1002/hyp.10268