Thermodynamic time asymmetry and the Boltzmann equation
An important result of statistical mechanics is the Boltzmann equation, which describes the evolution of the velocity distribution of a gas towards the equilibrium Maxwell distribution. We introduce the Boltzmann equation by considering a dynamical model of a two-dimensional gas consisting of hard d...
Gespeichert in:
Veröffentlicht in: | American journal of physics 2015-03, Vol.83 (3), p.223-230 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 230 |
---|---|
container_issue | 3 |
container_start_page | 223 |
container_title | American journal of physics |
container_volume | 83 |
creator | Boozer, A. D. |
description | An important result of statistical mechanics is the Boltzmann equation, which describes the evolution of the velocity distribution of a gas towards the equilibrium Maxwell distribution. We introduce the Boltzmann equation by considering a dynamical model of a two-dimensional gas consisting of hard disks. We derive the Boltzmann equation for the model and compare the behavior predicted by this equation against the actual behavior of the system as observed in computer simulations. A puzzling feature of the Boltzmann equation is that although the dynamical laws governing the gas are time-reversal invariant, the behavior predicted by the Boltzmann equation is time asymmetric. We show that this time asymmetry arises from assumptions made in the derivation of the Boltzmann equation, and we use computer simulations of the model system to investigate the circumstances under which these assumptions hold. |
doi_str_mv | 10.1119/1.4898433 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1658044173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3604003091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-4de25e58fdac4ae4001e28e0b9f4a8a00520f17a25a0bca7f0f9b0c5ae0ffd443</originalsourceid><addsrcrecordid>eNotkE1LAzEURYMoWKsL_8GAKxdT38skTrLU4hcU3NR1eJ15oVOamTZJF-Ovt9KuLhcO98IR4h5hhoj2CWfKWKOq6kJM0KqqlBbspZgAgCytBn0tblLaHKtFAxNRL9ccw9COPYWuKXIXuKA0hsA5jgX1bZHXXLwO2_wbqO8L3h8od0N_K648bRPfnXMqft7flvPPcvH98TV_WZSN1HUuVctSsza-pUYRKwBkaRhW1isyBKAleKxJaoJVQ7UHb1fQaGLwvlWqmoqH0-4uDvsDp-w2wyH2x0uHz9qAUlhXR-rxRDVxSCmyd7vYBYqjQ3D_Xhy6s5fqD2xmVNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658044173</pqid></control><display><type>article</type><title>Thermodynamic time asymmetry and the Boltzmann equation</title><source>AIP Journals Complete</source><creator>Boozer, A. D.</creator><creatorcontrib>Boozer, A. D.</creatorcontrib><description>An important result of statistical mechanics is the Boltzmann equation, which describes the evolution of the velocity distribution of a gas towards the equilibrium Maxwell distribution. We introduce the Boltzmann equation by considering a dynamical model of a two-dimensional gas consisting of hard disks. We derive the Boltzmann equation for the model and compare the behavior predicted by this equation against the actual behavior of the system as observed in computer simulations. A puzzling feature of the Boltzmann equation is that although the dynamical laws governing the gas are time-reversal invariant, the behavior predicted by the Boltzmann equation is time asymmetric. We show that this time asymmetry arises from assumptions made in the derivation of the Boltzmann equation, and we use computer simulations of the model system to investigate the circumstances under which these assumptions hold.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/1.4898433</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Institute of Physics</publisher><subject>Asymmetry ; Computer simulation ; Mathematical models ; Probability distribution ; Statistical mechanics ; Thermodynamics ; Velocity</subject><ispartof>American journal of physics, 2015-03, Vol.83 (3), p.223-230</ispartof><rights>Copyright American Institute of Physics Mar 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-4de25e58fdac4ae4001e28e0b9f4a8a00520f17a25a0bca7f0f9b0c5ae0ffd443</citedby><cites>FETCH-LOGICAL-c257t-4de25e58fdac4ae4001e28e0b9f4a8a00520f17a25a0bca7f0f9b0c5ae0ffd443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Boozer, A. D.</creatorcontrib><title>Thermodynamic time asymmetry and the Boltzmann equation</title><title>American journal of physics</title><description>An important result of statistical mechanics is the Boltzmann equation, which describes the evolution of the velocity distribution of a gas towards the equilibrium Maxwell distribution. We introduce the Boltzmann equation by considering a dynamical model of a two-dimensional gas consisting of hard disks. We derive the Boltzmann equation for the model and compare the behavior predicted by this equation against the actual behavior of the system as observed in computer simulations. A puzzling feature of the Boltzmann equation is that although the dynamical laws governing the gas are time-reversal invariant, the behavior predicted by the Boltzmann equation is time asymmetric. We show that this time asymmetry arises from assumptions made in the derivation of the Boltzmann equation, and we use computer simulations of the model system to investigate the circumstances under which these assumptions hold.</description><subject>Asymmetry</subject><subject>Computer simulation</subject><subject>Mathematical models</subject><subject>Probability distribution</subject><subject>Statistical mechanics</subject><subject>Thermodynamics</subject><subject>Velocity</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEURYMoWKsL_8GAKxdT38skTrLU4hcU3NR1eJ15oVOamTZJF-Ovt9KuLhcO98IR4h5hhoj2CWfKWKOq6kJM0KqqlBbspZgAgCytBn0tblLaHKtFAxNRL9ccw9COPYWuKXIXuKA0hsA5jgX1bZHXXLwO2_wbqO8L3h8od0N_K648bRPfnXMqft7flvPPcvH98TV_WZSN1HUuVctSsza-pUYRKwBkaRhW1isyBKAleKxJaoJVQ7UHb1fQaGLwvlWqmoqH0-4uDvsDp-w2wyH2x0uHz9qAUlhXR-rxRDVxSCmyd7vYBYqjQ3D_Xhy6s5fqD2xmVNE</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Boozer, A. D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150301</creationdate><title>Thermodynamic time asymmetry and the Boltzmann equation</title><author>Boozer, A. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-4de25e58fdac4ae4001e28e0b9f4a8a00520f17a25a0bca7f0f9b0c5ae0ffd443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Asymmetry</topic><topic>Computer simulation</topic><topic>Mathematical models</topic><topic>Probability distribution</topic><topic>Statistical mechanics</topic><topic>Thermodynamics</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boozer, A. D.</creatorcontrib><collection>CrossRef</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boozer, A. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic time asymmetry and the Boltzmann equation</atitle><jtitle>American journal of physics</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>83</volume><issue>3</issue><spage>223</spage><epage>230</epage><pages>223-230</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>An important result of statistical mechanics is the Boltzmann equation, which describes the evolution of the velocity distribution of a gas towards the equilibrium Maxwell distribution. We introduce the Boltzmann equation by considering a dynamical model of a two-dimensional gas consisting of hard disks. We derive the Boltzmann equation for the model and compare the behavior predicted by this equation against the actual behavior of the system as observed in computer simulations. A puzzling feature of the Boltzmann equation is that although the dynamical laws governing the gas are time-reversal invariant, the behavior predicted by the Boltzmann equation is time asymmetric. We show that this time asymmetry arises from assumptions made in the derivation of the Boltzmann equation, and we use computer simulations of the model system to investigate the circumstances under which these assumptions hold.</abstract><cop>Woodbury</cop><pub>American Institute of Physics</pub><doi>10.1119/1.4898433</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9505 |
ispartof | American journal of physics, 2015-03, Vol.83 (3), p.223-230 |
issn | 0002-9505 1943-2909 |
language | eng |
recordid | cdi_proquest_journals_1658044173 |
source | AIP Journals Complete |
subjects | Asymmetry Computer simulation Mathematical models Probability distribution Statistical mechanics Thermodynamics Velocity |
title | Thermodynamic time asymmetry and the Boltzmann equation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20time%20asymmetry%20and%20the%20Boltzmann%20equation&rft.jtitle=American%20journal%20of%20physics&rft.au=Boozer,%20A.%20D.&rft.date=2015-03-01&rft.volume=83&rft.issue=3&rft.spage=223&rft.epage=230&rft.pages=223-230&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/1.4898433&rft_dat=%3Cproquest_cross%3E3604003091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658044173&rft_id=info:pmid/&rfr_iscdi=true |