Thermodynamic time asymmetry and the Boltzmann equation

An important result of statistical mechanics is the Boltzmann equation, which describes the evolution of the velocity distribution of a gas towards the equilibrium Maxwell distribution. We introduce the Boltzmann equation by considering a dynamical model of a two-dimensional gas consisting of hard d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physics 2015-03, Vol.83 (3), p.223-230
1. Verfasser: Boozer, A. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 230
container_issue 3
container_start_page 223
container_title American journal of physics
container_volume 83
creator Boozer, A. D.
description An important result of statistical mechanics is the Boltzmann equation, which describes the evolution of the velocity distribution of a gas towards the equilibrium Maxwell distribution. We introduce the Boltzmann equation by considering a dynamical model of a two-dimensional gas consisting of hard disks. We derive the Boltzmann equation for the model and compare the behavior predicted by this equation against the actual behavior of the system as observed in computer simulations. A puzzling feature of the Boltzmann equation is that although the dynamical laws governing the gas are time-reversal invariant, the behavior predicted by the Boltzmann equation is time asymmetric. We show that this time asymmetry arises from assumptions made in the derivation of the Boltzmann equation, and we use computer simulations of the model system to investigate the circumstances under which these assumptions hold.
doi_str_mv 10.1119/1.4898433
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1658044173</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3604003091</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-4de25e58fdac4ae4001e28e0b9f4a8a00520f17a25a0bca7f0f9b0c5ae0ffd443</originalsourceid><addsrcrecordid>eNotkE1LAzEURYMoWKsL_8GAKxdT38skTrLU4hcU3NR1eJ15oVOamTZJF-Ovt9KuLhcO98IR4h5hhoj2CWfKWKOq6kJM0KqqlBbspZgAgCytBn0tblLaHKtFAxNRL9ccw9COPYWuKXIXuKA0hsA5jgX1bZHXXLwO2_wbqO8L3h8od0N_K648bRPfnXMqft7flvPPcvH98TV_WZSN1HUuVctSsza-pUYRKwBkaRhW1isyBKAleKxJaoJVQ7UHb1fQaGLwvlWqmoqH0-4uDvsDp-w2wyH2x0uHz9qAUlhXR-rxRDVxSCmyd7vYBYqjQ3D_Xhy6s5fqD2xmVNE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1658044173</pqid></control><display><type>article</type><title>Thermodynamic time asymmetry and the Boltzmann equation</title><source>AIP Journals Complete</source><creator>Boozer, A. D.</creator><creatorcontrib>Boozer, A. D.</creatorcontrib><description>An important result of statistical mechanics is the Boltzmann equation, which describes the evolution of the velocity distribution of a gas towards the equilibrium Maxwell distribution. We introduce the Boltzmann equation by considering a dynamical model of a two-dimensional gas consisting of hard disks. We derive the Boltzmann equation for the model and compare the behavior predicted by this equation against the actual behavior of the system as observed in computer simulations. A puzzling feature of the Boltzmann equation is that although the dynamical laws governing the gas are time-reversal invariant, the behavior predicted by the Boltzmann equation is time asymmetric. We show that this time asymmetry arises from assumptions made in the derivation of the Boltzmann equation, and we use computer simulations of the model system to investigate the circumstances under which these assumptions hold.</description><identifier>ISSN: 0002-9505</identifier><identifier>EISSN: 1943-2909</identifier><identifier>DOI: 10.1119/1.4898433</identifier><identifier>CODEN: AJPIAS</identifier><language>eng</language><publisher>Woodbury: American Institute of Physics</publisher><subject>Asymmetry ; Computer simulation ; Mathematical models ; Probability distribution ; Statistical mechanics ; Thermodynamics ; Velocity</subject><ispartof>American journal of physics, 2015-03, Vol.83 (3), p.223-230</ispartof><rights>Copyright American Institute of Physics Mar 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-4de25e58fdac4ae4001e28e0b9f4a8a00520f17a25a0bca7f0f9b0c5ae0ffd443</citedby><cites>FETCH-LOGICAL-c257t-4de25e58fdac4ae4001e28e0b9f4a8a00520f17a25a0bca7f0f9b0c5ae0ffd443</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Boozer, A. D.</creatorcontrib><title>Thermodynamic time asymmetry and the Boltzmann equation</title><title>American journal of physics</title><description>An important result of statistical mechanics is the Boltzmann equation, which describes the evolution of the velocity distribution of a gas towards the equilibrium Maxwell distribution. We introduce the Boltzmann equation by considering a dynamical model of a two-dimensional gas consisting of hard disks. We derive the Boltzmann equation for the model and compare the behavior predicted by this equation against the actual behavior of the system as observed in computer simulations. A puzzling feature of the Boltzmann equation is that although the dynamical laws governing the gas are time-reversal invariant, the behavior predicted by the Boltzmann equation is time asymmetric. We show that this time asymmetry arises from assumptions made in the derivation of the Boltzmann equation, and we use computer simulations of the model system to investigate the circumstances under which these assumptions hold.</description><subject>Asymmetry</subject><subject>Computer simulation</subject><subject>Mathematical models</subject><subject>Probability distribution</subject><subject>Statistical mechanics</subject><subject>Thermodynamics</subject><subject>Velocity</subject><issn>0002-9505</issn><issn>1943-2909</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNotkE1LAzEURYMoWKsL_8GAKxdT38skTrLU4hcU3NR1eJ15oVOamTZJF-Ovt9KuLhcO98IR4h5hhoj2CWfKWKOq6kJM0KqqlBbspZgAgCytBn0tblLaHKtFAxNRL9ccw9COPYWuKXIXuKA0hsA5jgX1bZHXXLwO2_wbqO8L3h8od0N_K648bRPfnXMqft7flvPPcvH98TV_WZSN1HUuVctSsza-pUYRKwBkaRhW1isyBKAleKxJaoJVQ7UHb1fQaGLwvlWqmoqH0-4uDvsDp-w2wyH2x0uHz9qAUlhXR-rxRDVxSCmyd7vYBYqjQ3D_Xhy6s5fqD2xmVNE</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Boozer, A. D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150301</creationdate><title>Thermodynamic time asymmetry and the Boltzmann equation</title><author>Boozer, A. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-4de25e58fdac4ae4001e28e0b9f4a8a00520f17a25a0bca7f0f9b0c5ae0ffd443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Asymmetry</topic><topic>Computer simulation</topic><topic>Mathematical models</topic><topic>Probability distribution</topic><topic>Statistical mechanics</topic><topic>Thermodynamics</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boozer, A. D.</creatorcontrib><collection>CrossRef</collection><jtitle>American journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boozer, A. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic time asymmetry and the Boltzmann equation</atitle><jtitle>American journal of physics</jtitle><date>2015-03-01</date><risdate>2015</risdate><volume>83</volume><issue>3</issue><spage>223</spage><epage>230</epage><pages>223-230</pages><issn>0002-9505</issn><eissn>1943-2909</eissn><coden>AJPIAS</coden><abstract>An important result of statistical mechanics is the Boltzmann equation, which describes the evolution of the velocity distribution of a gas towards the equilibrium Maxwell distribution. We introduce the Boltzmann equation by considering a dynamical model of a two-dimensional gas consisting of hard disks. We derive the Boltzmann equation for the model and compare the behavior predicted by this equation against the actual behavior of the system as observed in computer simulations. A puzzling feature of the Boltzmann equation is that although the dynamical laws governing the gas are time-reversal invariant, the behavior predicted by the Boltzmann equation is time asymmetric. We show that this time asymmetry arises from assumptions made in the derivation of the Boltzmann equation, and we use computer simulations of the model system to investigate the circumstances under which these assumptions hold.</abstract><cop>Woodbury</cop><pub>American Institute of Physics</pub><doi>10.1119/1.4898433</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-9505
ispartof American journal of physics, 2015-03, Vol.83 (3), p.223-230
issn 0002-9505
1943-2909
language eng
recordid cdi_proquest_journals_1658044173
source AIP Journals Complete
subjects Asymmetry
Computer simulation
Mathematical models
Probability distribution
Statistical mechanics
Thermodynamics
Velocity
title Thermodynamic time asymmetry and the Boltzmann equation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A34%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20time%20asymmetry%20and%20the%20Boltzmann%20equation&rft.jtitle=American%20journal%20of%20physics&rft.au=Boozer,%20A.%20D.&rft.date=2015-03-01&rft.volume=83&rft.issue=3&rft.spage=223&rft.epage=230&rft.pages=223-230&rft.issn=0002-9505&rft.eissn=1943-2909&rft.coden=AJPIAS&rft_id=info:doi/10.1119/1.4898433&rft_dat=%3Cproquest_cross%3E3604003091%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1658044173&rft_id=info:pmid/&rfr_iscdi=true