Detecting structural changes using wavelets

•We develop a wavelet structural break test.•We establish limiting distribution of the test.•We analyze the size and power properties of the test in a simulation study.•We show that the test has a reasonable size and substantial power.•The power is significantly higher compared to alternatives when...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Finance research letters 2015-02, Vol.12, p.23-37
Hauptverfasser: Yazgan, M. Ege, Özkan, Harun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue
container_start_page 23
container_title Finance research letters
container_volume 12
creator Yazgan, M. Ege
Özkan, Harun
description •We develop a wavelet structural break test.•We establish limiting distribution of the test.•We analyze the size and power properties of the test in a simulation study.•We show that the test has a reasonable size and substantial power.•The power is significantly higher compared to alternatives when breaks are multiple. We propose a powerful wavelet method to identify structural breaks in the mean of a process. If there is a structural change in the mean, the sum of the squared scaling coefficients absorbs more variation, leading to unequal weights for the variances of the wavelet and scaling coefficients. We use this feature of wavelets to design a statistical test for changes in the mean of an independently distributed process. We establish the limiting null distribution of our test and demonstrate that our test has good empirical size and substantive power relative to the existing alternatives especially for multiple breaks.
doi_str_mv 10.1016/j.frl.2014.12.003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1656339239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1544612314000841</els_id><sourcerecordid>3597515311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-42c707e10a83c886ebdc6e7c178c898dfa8f494666a8de78fbcd2f74a5f0fc03</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhoMouH78AG8LHqU1k6RJiidZP2HBy95DNp2sLbVdk3TFf2-WFY-eZmDeZ2Z4CLkCWgIFeduVPvQloyBKYCWl_IjMoBKikMDh-K9n_JScxdhRypRWckZuHjChS-2wmccUJpemYPu5e7fDBuN8ivvBl91hjylekBNv-4iXv_WcrJ4eV4uXYvn2_Lq4XxaOVzIVgjlFFQK1mjutJa4bJ1E5UNrpWjfeai9qIaW0ukGl_do1zCthK0-9o_ycXB_WbsP4OWFMphunMOSLBmQlOa8Zr3MKDikXxhgDerMN7YcN3wao2SsxnclKzF6JAWaykszcHRjM3-9aDCa6FgeHTRuyBNOM7T_0D9sIaRU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656339239</pqid></control><display><type>article</type><title>Detecting structural changes using wavelets</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Yazgan, M. Ege ; Özkan, Harun</creator><creatorcontrib>Yazgan, M. Ege ; Özkan, Harun</creatorcontrib><description>•We develop a wavelet structural break test.•We establish limiting distribution of the test.•We analyze the size and power properties of the test in a simulation study.•We show that the test has a reasonable size and substantial power.•The power is significantly higher compared to alternatives when breaks are multiple. We propose a powerful wavelet method to identify structural breaks in the mean of a process. If there is a structural change in the mean, the sum of the squared scaling coefficients absorbs more variation, leading to unequal weights for the variances of the wavelet and scaling coefficients. We use this feature of wavelets to design a statistical test for changes in the mean of an independently distributed process. We establish the limiting null distribution of our test and demonstrate that our test has good empirical size and substantive power relative to the existing alternatives especially for multiple breaks.</description><identifier>ISSN: 1544-6123</identifier><identifier>EISSN: 1544-6131</identifier><identifier>DOI: 10.1016/j.frl.2014.12.003</identifier><language>eng</language><publisher>San Diego: Elsevier Inc</publisher><subject>Econometrics ; Maximum overlap discrete wavelet transformation ; Probability distribution ; Research methodology ; Structural adjustment ; Structural break tests ; Structural change tests ; Studies ; Waveform analysis ; Wavelets</subject><ispartof>Finance research letters, 2015-02, Vol.12, p.23-37</ispartof><rights>2014 Elsevier Inc.</rights><rights>Copyright Academic Press Feb 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-42c707e10a83c886ebdc6e7c178c898dfa8f494666a8de78fbcd2f74a5f0fc03</citedby><cites>FETCH-LOGICAL-c356t-42c707e10a83c886ebdc6e7c178c898dfa8f494666a8de78fbcd2f74a5f0fc03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.frl.2014.12.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids></links><search><creatorcontrib>Yazgan, M. Ege</creatorcontrib><creatorcontrib>Özkan, Harun</creatorcontrib><title>Detecting structural changes using wavelets</title><title>Finance research letters</title><description>•We develop a wavelet structural break test.•We establish limiting distribution of the test.•We analyze the size and power properties of the test in a simulation study.•We show that the test has a reasonable size and substantial power.•The power is significantly higher compared to alternatives when breaks are multiple. We propose a powerful wavelet method to identify structural breaks in the mean of a process. If there is a structural change in the mean, the sum of the squared scaling coefficients absorbs more variation, leading to unequal weights for the variances of the wavelet and scaling coefficients. We use this feature of wavelets to design a statistical test for changes in the mean of an independently distributed process. We establish the limiting null distribution of our test and demonstrate that our test has good empirical size and substantive power relative to the existing alternatives especially for multiple breaks.</description><subject>Econometrics</subject><subject>Maximum overlap discrete wavelet transformation</subject><subject>Probability distribution</subject><subject>Research methodology</subject><subject>Structural adjustment</subject><subject>Structural break tests</subject><subject>Structural change tests</subject><subject>Studies</subject><subject>Waveform analysis</subject><subject>Wavelets</subject><issn>1544-6123</issn><issn>1544-6131</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhoMouH78AG8LHqU1k6RJiidZP2HBy95DNp2sLbVdk3TFf2-WFY-eZmDeZ2Z4CLkCWgIFeduVPvQloyBKYCWl_IjMoBKikMDh-K9n_JScxdhRypRWckZuHjChS-2wmccUJpemYPu5e7fDBuN8ivvBl91hjylekBNv-4iXv_WcrJ4eV4uXYvn2_Lq4XxaOVzIVgjlFFQK1mjutJa4bJ1E5UNrpWjfeai9qIaW0ukGl_do1zCthK0-9o_ycXB_WbsP4OWFMphunMOSLBmQlOa8Zr3MKDikXxhgDerMN7YcN3wao2SsxnclKzF6JAWaykszcHRjM3-9aDCa6FgeHTRuyBNOM7T_0D9sIaRU</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Yazgan, M. Ege</creator><creator>Özkan, Harun</creator><general>Elsevier Inc</general><general>Academic Press</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150201</creationdate><title>Detecting structural changes using wavelets</title><author>Yazgan, M. Ege ; Özkan, Harun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-42c707e10a83c886ebdc6e7c178c898dfa8f494666a8de78fbcd2f74a5f0fc03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Econometrics</topic><topic>Maximum overlap discrete wavelet transformation</topic><topic>Probability distribution</topic><topic>Research methodology</topic><topic>Structural adjustment</topic><topic>Structural break tests</topic><topic>Structural change tests</topic><topic>Studies</topic><topic>Waveform analysis</topic><topic>Wavelets</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yazgan, M. Ege</creatorcontrib><creatorcontrib>Özkan, Harun</creatorcontrib><collection>CrossRef</collection><jtitle>Finance research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yazgan, M. Ege</au><au>Özkan, Harun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detecting structural changes using wavelets</atitle><jtitle>Finance research letters</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>12</volume><spage>23</spage><epage>37</epage><pages>23-37</pages><issn>1544-6123</issn><eissn>1544-6131</eissn><abstract>•We develop a wavelet structural break test.•We establish limiting distribution of the test.•We analyze the size and power properties of the test in a simulation study.•We show that the test has a reasonable size and substantial power.•The power is significantly higher compared to alternatives when breaks are multiple. We propose a powerful wavelet method to identify structural breaks in the mean of a process. If there is a structural change in the mean, the sum of the squared scaling coefficients absorbs more variation, leading to unequal weights for the variances of the wavelet and scaling coefficients. We use this feature of wavelets to design a statistical test for changes in the mean of an independently distributed process. We establish the limiting null distribution of our test and demonstrate that our test has good empirical size and substantive power relative to the existing alternatives especially for multiple breaks.</abstract><cop>San Diego</cop><pub>Elsevier Inc</pub><doi>10.1016/j.frl.2014.12.003</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1544-6123
ispartof Finance research letters, 2015-02, Vol.12, p.23-37
issn 1544-6123
1544-6131
language eng
recordid cdi_proquest_journals_1656339239
source ScienceDirect Journals (5 years ago - present)
subjects Econometrics
Maximum overlap discrete wavelet transformation
Probability distribution
Research methodology
Structural adjustment
Structural break tests
Structural change tests
Studies
Waveform analysis
Wavelets
title Detecting structural changes using wavelets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A23%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detecting%20structural%20changes%20using%20wavelets&rft.jtitle=Finance%20research%20letters&rft.au=Yazgan,%20M.%20Ege&rft.date=2015-02-01&rft.volume=12&rft.spage=23&rft.epage=37&rft.pages=23-37&rft.issn=1544-6123&rft.eissn=1544-6131&rft_id=info:doi/10.1016/j.frl.2014.12.003&rft_dat=%3Cproquest_cross%3E3597515311%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656339239&rft_id=info:pmid/&rft_els_id=S1544612314000841&rfr_iscdi=true