Intelligent optimization of renewable resource mixes incorporating the effect of fuel risk, fuel cost and CO2 emission

Power system planning is a capital intensive investment-decision problem. The majority of the conven- tional planning conducted since the last half a century has been based on the least cost approach, keeping in view the optimization of cost and reliability of power supply. Recently, renewable energ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers in Energy 2015-03, Vol.9 (1), p.91-105
Hauptverfasser: Kumar, Deepak, Mohanta, D. K., Reddy, M. Jaya Bharata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105
container_issue 1
container_start_page 91
container_title Frontiers in Energy
container_volume 9
creator Kumar, Deepak
Mohanta, D. K.
Reddy, M. Jaya Bharata
description Power system planning is a capital intensive investment-decision problem. The majority of the conven- tional planning conducted since the last half a century has been based on the least cost approach, keeping in view the optimization of cost and reliability of power supply. Recently, renewable energy sources have found a niche in power system planning owing to concerns arising from fast depletion of fossil fuels, fuel price volatility as well as global climatic changes. Thus, power system planning is under-going a paradigm shift to incorporate such recent technologies. This paper assesses the impact of renewable sources using the portfolio theory to incorporate the effects of fuel price volatility as well as CO2 emissions. An optimization framework using a robust multi-objective evolutionary algorithm, namely NSGA-II, is developed to obtain Pareto optimal solutions. The performance of the proposed approach is assessed and illustrated using the Indian power system considering real-time design prac- tices. The case study for Indian power system validates the efficacy of the proposed methodology as developing countries are also increasing the investment in green energy to increase awareness about clean energy technologies.
doi_str_mv 10.1007/s11708-015-0345-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1656261183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>664245364</cqvip_id><sourcerecordid>3597100301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-f97b6ae77a2bfd88e14d18604f3eaae5aab20fd16f835bdab9314f30def4a91f3</originalsourceid><addsrcrecordid>eNp9kE9LxDAUxIsoKOoH8Bb0avW9pk3boyz-A8GLnkPavqzRbrImWXX99GapiidPGcj8ZniTZUcIZwhQnwfEGpocsMqBl1W-3sr2CmirHEXbbP_oGnA3OwzhGQAQoYK62Mvebm2kcTRzspG5ZTQL86micZY5zTxZelfdSEkFt_I9sYX5oMCM7Z1fOp-cds7iEzHSmvq4gfSKRuZNeDmdZO9CZMoObHZfMFqYEFL6Qbaj1Rjo8Pvdzx6vLh9mN_nd_fXt7OIu73nJY67buhOK6loVnR6ahrAcsBFQak5KUaVUV4AeUOiGV92gupZj-oOBdKla1Hw_O5lyl969rihE-ZzusKlSoqhEIRAbnlw4uXrvQvCk5dKbhfJriSA3C8tpYZkWlpuF5ToxxcSE5LVz8n-S_4GOv4uenJ2_Ju63SYiyKCsuSv4FFNiMeQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1656261183</pqid></control><display><type>article</type><title>Intelligent optimization of renewable resource mixes incorporating the effect of fuel risk, fuel cost and CO2 emission</title><source>SpringerLink Journals</source><creator>Kumar, Deepak ; Mohanta, D. K. ; Reddy, M. Jaya Bharata</creator><creatorcontrib>Kumar, Deepak ; Mohanta, D. K. ; Reddy, M. Jaya Bharata</creatorcontrib><description>Power system planning is a capital intensive investment-decision problem. The majority of the conven- tional planning conducted since the last half a century has been based on the least cost approach, keeping in view the optimization of cost and reliability of power supply. Recently, renewable energy sources have found a niche in power system planning owing to concerns arising from fast depletion of fossil fuels, fuel price volatility as well as global climatic changes. Thus, power system planning is under-going a paradigm shift to incorporate such recent technologies. This paper assesses the impact of renewable sources using the portfolio theory to incorporate the effects of fuel price volatility as well as CO2 emissions. An optimization framework using a robust multi-objective evolutionary algorithm, namely NSGA-II, is developed to obtain Pareto optimal solutions. The performance of the proposed approach is assessed and illustrated using the Indian power system considering real-time design prac- tices. The case study for Indian power system validates the efficacy of the proposed methodology as developing countries are also increasing the investment in green energy to increase awareness about clean energy technologies.</description><identifier>ISSN: 2095-1701</identifier><identifier>EISSN: 2095-1698</identifier><identifier>DOI: 10.1007/s11708-015-0345-y</identifier><language>eng</language><publisher>Heidelberg: Higher Education Press</publisher><subject>Alternative energy sources ; Carbon dioxide ; Carbon dioxide emissions ; Clean energy ; Clean technology ; Climate change ; Developing countries ; Electric utilities ; Electricity generation ; Emission standards ; Emissions ; Energy ; Energy consumption ; Energy industry ; Energy resources ; Energy Systems ; Expansion ; Fossil fuels ; Global climate ; Green energy ; Infrastructure ; LDCs ; Optimization ; Optimization techniques ; Pareto optimum ; Pareto最优解 ; Planning ; Portfolio performance ; Renewable energy sources ; Renewable resources ; Research Article ; Studies ; Technology ; Volatility ; 二氧化碳排放量 ; 优化集成 ; 可再生资源 ; 投资组合理论 ; 混合燃料 ; 燃油费 ; 电力系统规划</subject><ispartof>Frontiers in Energy, 2015-03, Vol.9 (1), p.91-105</ispartof><rights>Higher Education Press and Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-f97b6ae77a2bfd88e14d18604f3eaae5aab20fd16f835bdab9314f30def4a91f3</citedby><cites>FETCH-LOGICAL-c343t-f97b6ae77a2bfd88e14d18604f3eaae5aab20fd16f835bdab9314f30def4a91f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71239X/71239X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11708-015-0345-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11708-015-0345-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kumar, Deepak</creatorcontrib><creatorcontrib>Mohanta, D. K.</creatorcontrib><creatorcontrib>Reddy, M. Jaya Bharata</creatorcontrib><title>Intelligent optimization of renewable resource mixes incorporating the effect of fuel risk, fuel cost and CO2 emission</title><title>Frontiers in Energy</title><addtitle>Front. Energy</addtitle><addtitle>Frontiers in Energy</addtitle><description>Power system planning is a capital intensive investment-decision problem. The majority of the conven- tional planning conducted since the last half a century has been based on the least cost approach, keeping in view the optimization of cost and reliability of power supply. Recently, renewable energy sources have found a niche in power system planning owing to concerns arising from fast depletion of fossil fuels, fuel price volatility as well as global climatic changes. Thus, power system planning is under-going a paradigm shift to incorporate such recent technologies. This paper assesses the impact of renewable sources using the portfolio theory to incorporate the effects of fuel price volatility as well as CO2 emissions. An optimization framework using a robust multi-objective evolutionary algorithm, namely NSGA-II, is developed to obtain Pareto optimal solutions. The performance of the proposed approach is assessed and illustrated using the Indian power system considering real-time design prac- tices. The case study for Indian power system validates the efficacy of the proposed methodology as developing countries are also increasing the investment in green energy to increase awareness about clean energy technologies.</description><subject>Alternative energy sources</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Clean energy</subject><subject>Clean technology</subject><subject>Climate change</subject><subject>Developing countries</subject><subject>Electric utilities</subject><subject>Electricity generation</subject><subject>Emission standards</subject><subject>Emissions</subject><subject>Energy</subject><subject>Energy consumption</subject><subject>Energy industry</subject><subject>Energy resources</subject><subject>Energy Systems</subject><subject>Expansion</subject><subject>Fossil fuels</subject><subject>Global climate</subject><subject>Green energy</subject><subject>Infrastructure</subject><subject>LDCs</subject><subject>Optimization</subject><subject>Optimization techniques</subject><subject>Pareto optimum</subject><subject>Pareto最优解</subject><subject>Planning</subject><subject>Portfolio performance</subject><subject>Renewable energy sources</subject><subject>Renewable resources</subject><subject>Research Article</subject><subject>Studies</subject><subject>Technology</subject><subject>Volatility</subject><subject>二氧化碳排放量</subject><subject>优化集成</subject><subject>可再生资源</subject><subject>投资组合理论</subject><subject>混合燃料</subject><subject>燃油费</subject><subject>电力系统规划</subject><issn>2095-1701</issn><issn>2095-1698</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LxDAUxIsoKOoH8Bb0avW9pk3boyz-A8GLnkPavqzRbrImWXX99GapiidPGcj8ZniTZUcIZwhQnwfEGpocsMqBl1W-3sr2CmirHEXbbP_oGnA3OwzhGQAQoYK62Mvebm2kcTRzspG5ZTQL86micZY5zTxZelfdSEkFt_I9sYX5oMCM7Z1fOp-cds7iEzHSmvq4gfSKRuZNeDmdZO9CZMoObHZfMFqYEFL6Qbaj1Rjo8Pvdzx6vLh9mN_nd_fXt7OIu73nJY67buhOK6loVnR6ahrAcsBFQak5KUaVUV4AeUOiGV92gupZj-oOBdKla1Hw_O5lyl969rihE-ZzusKlSoqhEIRAbnlw4uXrvQvCk5dKbhfJriSA3C8tpYZkWlpuF5ToxxcSE5LVz8n-S_4GOv4uenJ2_Ju63SYiyKCsuSv4FFNiMeQ</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Kumar, Deepak</creator><creator>Mohanta, D. K.</creator><creator>Reddy, M. Jaya Bharata</creator><general>Higher Education Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>88K</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M2T</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PATMY</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20150301</creationdate><title>Intelligent optimization of renewable resource mixes incorporating the effect of fuel risk, fuel cost and CO2 emission</title><author>Kumar, Deepak ; Mohanta, D. K. ; Reddy, M. Jaya Bharata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-f97b6ae77a2bfd88e14d18604f3eaae5aab20fd16f835bdab9314f30def4a91f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alternative energy sources</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Clean energy</topic><topic>Clean technology</topic><topic>Climate change</topic><topic>Developing countries</topic><topic>Electric utilities</topic><topic>Electricity generation</topic><topic>Emission standards</topic><topic>Emissions</topic><topic>Energy</topic><topic>Energy consumption</topic><topic>Energy industry</topic><topic>Energy resources</topic><topic>Energy Systems</topic><topic>Expansion</topic><topic>Fossil fuels</topic><topic>Global climate</topic><topic>Green energy</topic><topic>Infrastructure</topic><topic>LDCs</topic><topic>Optimization</topic><topic>Optimization techniques</topic><topic>Pareto optimum</topic><topic>Pareto最优解</topic><topic>Planning</topic><topic>Portfolio performance</topic><topic>Renewable energy sources</topic><topic>Renewable resources</topic><topic>Research Article</topic><topic>Studies</topic><topic>Technology</topic><topic>Volatility</topic><topic>二氧化碳排放量</topic><topic>优化集成</topic><topic>可再生资源</topic><topic>投资组合理论</topic><topic>混合燃料</topic><topic>燃油费</topic><topic>电力系统规划</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kumar, Deepak</creatorcontrib><creatorcontrib>Mohanta, D. K.</creatorcontrib><creatorcontrib>Reddy, M. Jaya Bharata</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Telecommunications (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Telecommunications Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>Environmental Science Database</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Frontiers in Energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kumar, Deepak</au><au>Mohanta, D. K.</au><au>Reddy, M. Jaya Bharata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent optimization of renewable resource mixes incorporating the effect of fuel risk, fuel cost and CO2 emission</atitle><jtitle>Frontiers in Energy</jtitle><stitle>Front. Energy</stitle><addtitle>Frontiers in Energy</addtitle><date>2015-03-01</date><risdate>2015</risdate><volume>9</volume><issue>1</issue><spage>91</spage><epage>105</epage><pages>91-105</pages><issn>2095-1701</issn><eissn>2095-1698</eissn><abstract>Power system planning is a capital intensive investment-decision problem. The majority of the conven- tional planning conducted since the last half a century has been based on the least cost approach, keeping in view the optimization of cost and reliability of power supply. Recently, renewable energy sources have found a niche in power system planning owing to concerns arising from fast depletion of fossil fuels, fuel price volatility as well as global climatic changes. Thus, power system planning is under-going a paradigm shift to incorporate such recent technologies. This paper assesses the impact of renewable sources using the portfolio theory to incorporate the effects of fuel price volatility as well as CO2 emissions. An optimization framework using a robust multi-objective evolutionary algorithm, namely NSGA-II, is developed to obtain Pareto optimal solutions. The performance of the proposed approach is assessed and illustrated using the Indian power system considering real-time design prac- tices. The case study for Indian power system validates the efficacy of the proposed methodology as developing countries are also increasing the investment in green energy to increase awareness about clean energy technologies.</abstract><cop>Heidelberg</cop><pub>Higher Education Press</pub><doi>10.1007/s11708-015-0345-y</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2095-1701
ispartof Frontiers in Energy, 2015-03, Vol.9 (1), p.91-105
issn 2095-1701
2095-1698
language eng
recordid cdi_proquest_journals_1656261183
source SpringerLink Journals
subjects Alternative energy sources
Carbon dioxide
Carbon dioxide emissions
Clean energy
Clean technology
Climate change
Developing countries
Electric utilities
Electricity generation
Emission standards
Emissions
Energy
Energy consumption
Energy industry
Energy resources
Energy Systems
Expansion
Fossil fuels
Global climate
Green energy
Infrastructure
LDCs
Optimization
Optimization techniques
Pareto optimum
Pareto最优解
Planning
Portfolio performance
Renewable energy sources
Renewable resources
Research Article
Studies
Technology
Volatility
二氧化碳排放量
优化集成
可再生资源
投资组合理论
混合燃料
燃油费
电力系统规划
title Intelligent optimization of renewable resource mixes incorporating the effect of fuel risk, fuel cost and CO2 emission
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T21%3A24%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20optimization%20of%20renewable%20resource%20mixes%20incorporating%20the%20effect%20of%20fuel%20risk,%20fuel%20cost%20and%20CO2%20emission&rft.jtitle=Frontiers%20in%20Energy&rft.au=Kumar,%20Deepak&rft.date=2015-03-01&rft.volume=9&rft.issue=1&rft.spage=91&rft.epage=105&rft.pages=91-105&rft.issn=2095-1701&rft.eissn=2095-1698&rft_id=info:doi/10.1007/s11708-015-0345-y&rft_dat=%3Cproquest_cross%3E3597100301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1656261183&rft_id=info:pmid/&rft_cqvip_id=664245364&rfr_iscdi=true