High Polymer Content 2,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties

Three series of polybenzimidazole (PBI) random copolymers (2,5‐pyridine‐r‐meta‐PBI, 2,5‐pyridine‐r‐para‐PBI, and 2,5‐pyridine‐r‐2OH‐PBI) were synthesized and cast into phosphoric acid (PA) doped membranes using the PolyPhosphoric Acid (PPA) Process. Copolymer composition was adjusted using co‐monome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2015-02, Vol.15 (1), p.150-155
Hauptverfasser: Molleo, M. A., Chen, X., Ploehn, H. J., Benicewicz, B. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 155
container_issue 1
container_start_page 150
container_title Fuel cells (Weinheim an der Bergstrasse, Germany)
container_volume 15
creator Molleo, M. A.
Chen, X.
Ploehn, H. J.
Benicewicz, B. C.
description Three series of polybenzimidazole (PBI) random copolymers (2,5‐pyridine‐r‐meta‐PBI, 2,5‐pyridine‐r‐para‐PBI, and 2,5‐pyridine‐r‐2OH‐PBI) were synthesized and cast into phosphoric acid (PA) doped membranes using the PolyPhosphoric Acid (PPA) Process. Copolymer composition was adjusted using co‐monomers that impart high and low solubility characteristics to simultaneously control overall copolymer solubility and gel membrane stability. Measured under a static compressive force at 180 °C, copolymer membranes generally exhibited decreased creep compliance with increasing polymer content. Within each series of copolymer membranes, increasing polymer contents proportionally reduced the phosphoric acid/polymer repeat unit (PA/PRU) ratios and their respective proton conductivities. Some copolymer membranes exhibited comparable fuel cell performances (up to 0.66 V at 0.2 A cm−2 following break‐in) to para‐PBI (0.68 V at 0.2 A cm−2) and equal to 3,5‐pyridine‐based high solids membranes. Furthermore, 2,5‐pyridine copolymer membranes maintained a consistent fuel cell voltage of >0.6 V at 0.2 A cm−2 for over 8600 h under steady‐state operation conditions. Phosphoric acid loss was monitored during long‐term studies and demonstrated acid losses as low as 5.55 ng cm−2 h−1. The high‐temperature creep resistance and long‐term operational stabilities of the 2,5‐pyridine copolymer membranes suggest that they are excellent candidates for use in extended lifetime electrochemical applications.
doi_str_mv 10.1002/fuce.201400129
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1654889540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3589177661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4629-c42ba54ddbef4f2b12b492fcba6f14d5321399bc22e104fda7d4f075e506bed43</originalsourceid><addsrcrecordid>eNqFkMlOwzAURSMEEuOWdSS2pNiOnWEJER2kAkEMXVpx_EwNGYqdAu3X4ypVxY6NfSWf4_d0Pe8cowFGiFypZQkDgjBFCJN0zzvCEWZBlDC6v8s0OvSOrX13SJwk9Mirxvpt7udttarB-FnbdNB0PrlkQb4yWuoGgs2jgGatay2LdVuBwxZb4Q5qYYoGrP-tu7k_qRem_QLpCJfAWv0Ffm7aBZhOgz31DlRRWTjb3ifey_D2ORsH04fRJLueBiWNSOpOIgpGpRSgqCICE0FTokpRRApTyUKCwzQVJSGAEVWyiCVVKGbAUCRA0vDEu-j_ddt8LsF2_L1dmsaN5DhiNElSRpGjBj1VmtZaA4ovjK4Ls-IY8U2jfNMo3zXqhLQXvnUFq39oPnzJbv-6Qe9q28HPzi3MB4_iMGZ8dj_ij69POc6SGz4LfwHEQ4vR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654889540</pqid></control><display><type>article</type><title>High Polymer Content 2,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Molleo, M. A. ; Chen, X. ; Ploehn, H. J. ; Benicewicz, B. C.</creator><creatorcontrib>Molleo, M. A. ; Chen, X. ; Ploehn, H. J. ; Benicewicz, B. C.</creatorcontrib><description>Three series of polybenzimidazole (PBI) random copolymers (2,5‐pyridine‐r‐meta‐PBI, 2,5‐pyridine‐r‐para‐PBI, and 2,5‐pyridine‐r‐2OH‐PBI) were synthesized and cast into phosphoric acid (PA) doped membranes using the PolyPhosphoric Acid (PPA) Process. Copolymer composition was adjusted using co‐monomers that impart high and low solubility characteristics to simultaneously control overall copolymer solubility and gel membrane stability. Measured under a static compressive force at 180 °C, copolymer membranes generally exhibited decreased creep compliance with increasing polymer content. Within each series of copolymer membranes, increasing polymer contents proportionally reduced the phosphoric acid/polymer repeat unit (PA/PRU) ratios and their respective proton conductivities. Some copolymer membranes exhibited comparable fuel cell performances (up to 0.66 V at 0.2 A cm−2 following break‐in) to para‐PBI (0.68 V at 0.2 A cm−2) and equal to 3,5‐pyridine‐based high solids membranes. Furthermore, 2,5‐pyridine copolymer membranes maintained a consistent fuel cell voltage of &gt;0.6 V at 0.2 A cm−2 for over 8600 h under steady‐state operation conditions. Phosphoric acid loss was monitored during long‐term studies and demonstrated acid losses as low as 5.55 ng cm−2 h−1. The high‐temperature creep resistance and long‐term operational stabilities of the 2,5‐pyridine copolymer membranes suggest that they are excellent candidates for use in extended lifetime electrochemical applications.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.201400129</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>2OH-PBI ; Copolymers ; Creep Compliance ; Creep Compliance, Fuel Cell, Membrane Creep, Meta‐PBI, 2OH‐PBI, Para‐PBI, PBI ; Fuel Cell ; Fuel cells ; Membrane Creep ; Meta-PBI ; Para-PBI ; PBI ; PBI Copolymers ; PEM ; Phosphoric Acid ; Polybenzimidazole ; Polymer Electrolyte Membrane ; PPA Process ; Pyridine PBI</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2015-02, Vol.15 (1), p.150-155</ispartof><rights>Copyright © 2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4629-c42ba54ddbef4f2b12b492fcba6f14d5321399bc22e104fda7d4f075e506bed43</citedby><cites>FETCH-LOGICAL-c4629-c42ba54ddbef4f2b12b492fcba6f14d5321399bc22e104fda7d4f075e506bed43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffuce.201400129$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffuce.201400129$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Molleo, M. A.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Ploehn, H. J.</creatorcontrib><creatorcontrib>Benicewicz, B. C.</creatorcontrib><title>High Polymer Content 2,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><addtitle>Fuel Cells</addtitle><description>Three series of polybenzimidazole (PBI) random copolymers (2,5‐pyridine‐r‐meta‐PBI, 2,5‐pyridine‐r‐para‐PBI, and 2,5‐pyridine‐r‐2OH‐PBI) were synthesized and cast into phosphoric acid (PA) doped membranes using the PolyPhosphoric Acid (PPA) Process. Copolymer composition was adjusted using co‐monomers that impart high and low solubility characteristics to simultaneously control overall copolymer solubility and gel membrane stability. Measured under a static compressive force at 180 °C, copolymer membranes generally exhibited decreased creep compliance with increasing polymer content. Within each series of copolymer membranes, increasing polymer contents proportionally reduced the phosphoric acid/polymer repeat unit (PA/PRU) ratios and their respective proton conductivities. Some copolymer membranes exhibited comparable fuel cell performances (up to 0.66 V at 0.2 A cm−2 following break‐in) to para‐PBI (0.68 V at 0.2 A cm−2) and equal to 3,5‐pyridine‐based high solids membranes. Furthermore, 2,5‐pyridine copolymer membranes maintained a consistent fuel cell voltage of &gt;0.6 V at 0.2 A cm−2 for over 8600 h under steady‐state operation conditions. Phosphoric acid loss was monitored during long‐term studies and demonstrated acid losses as low as 5.55 ng cm−2 h−1. The high‐temperature creep resistance and long‐term operational stabilities of the 2,5‐pyridine copolymer membranes suggest that they are excellent candidates for use in extended lifetime electrochemical applications.</description><subject>2OH-PBI</subject><subject>Copolymers</subject><subject>Creep Compliance</subject><subject>Creep Compliance, Fuel Cell, Membrane Creep, Meta‐PBI, 2OH‐PBI, Para‐PBI, PBI</subject><subject>Fuel Cell</subject><subject>Fuel cells</subject><subject>Membrane Creep</subject><subject>Meta-PBI</subject><subject>Para-PBI</subject><subject>PBI</subject><subject>PBI Copolymers</subject><subject>PEM</subject><subject>Phosphoric Acid</subject><subject>Polybenzimidazole</subject><subject>Polymer Electrolyte Membrane</subject><subject>PPA Process</subject><subject>Pyridine PBI</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMlOwzAURSMEEuOWdSS2pNiOnWEJER2kAkEMXVpx_EwNGYqdAu3X4ypVxY6NfSWf4_d0Pe8cowFGiFypZQkDgjBFCJN0zzvCEWZBlDC6v8s0OvSOrX13SJwk9Mirxvpt7udttarB-FnbdNB0PrlkQb4yWuoGgs2jgGatay2LdVuBwxZb4Q5qYYoGrP-tu7k_qRem_QLpCJfAWv0Ffm7aBZhOgz31DlRRWTjb3ifey_D2ORsH04fRJLueBiWNSOpOIgpGpRSgqCICE0FTokpRRApTyUKCwzQVJSGAEVWyiCVVKGbAUCRA0vDEu-j_ddt8LsF2_L1dmsaN5DhiNElSRpGjBj1VmtZaA4ovjK4Ls-IY8U2jfNMo3zXqhLQXvnUFq39oPnzJbv-6Qe9q28HPzi3MB4_iMGZ8dj_ij69POc6SGz4LfwHEQ4vR</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Molleo, M. A.</creator><creator>Chen, X.</creator><creator>Ploehn, H. J.</creator><creator>Benicewicz, B. C.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201502</creationdate><title>High Polymer Content 2,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties</title><author>Molleo, M. A. ; Chen, X. ; Ploehn, H. J. ; Benicewicz, B. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4629-c42ba54ddbef4f2b12b492fcba6f14d5321399bc22e104fda7d4f075e506bed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>2OH-PBI</topic><topic>Copolymers</topic><topic>Creep Compliance</topic><topic>Creep Compliance, Fuel Cell, Membrane Creep, Meta‐PBI, 2OH‐PBI, Para‐PBI, PBI</topic><topic>Fuel Cell</topic><topic>Fuel cells</topic><topic>Membrane Creep</topic><topic>Meta-PBI</topic><topic>Para-PBI</topic><topic>PBI</topic><topic>PBI Copolymers</topic><topic>PEM</topic><topic>Phosphoric Acid</topic><topic>Polybenzimidazole</topic><topic>Polymer Electrolyte Membrane</topic><topic>PPA Process</topic><topic>Pyridine PBI</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molleo, M. A.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Ploehn, H. J.</creatorcontrib><creatorcontrib>Benicewicz, B. C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molleo, M. A.</au><au>Chen, X.</au><au>Ploehn, H. J.</au><au>Benicewicz, B. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Polymer Content 2,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Fuel Cells</addtitle><date>2015-02</date><risdate>2015</risdate><volume>15</volume><issue>1</issue><spage>150</spage><epage>155</epage><pages>150-155</pages><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>Three series of polybenzimidazole (PBI) random copolymers (2,5‐pyridine‐r‐meta‐PBI, 2,5‐pyridine‐r‐para‐PBI, and 2,5‐pyridine‐r‐2OH‐PBI) were synthesized and cast into phosphoric acid (PA) doped membranes using the PolyPhosphoric Acid (PPA) Process. Copolymer composition was adjusted using co‐monomers that impart high and low solubility characteristics to simultaneously control overall copolymer solubility and gel membrane stability. Measured under a static compressive force at 180 °C, copolymer membranes generally exhibited decreased creep compliance with increasing polymer content. Within each series of copolymer membranes, increasing polymer contents proportionally reduced the phosphoric acid/polymer repeat unit (PA/PRU) ratios and their respective proton conductivities. Some copolymer membranes exhibited comparable fuel cell performances (up to 0.66 V at 0.2 A cm−2 following break‐in) to para‐PBI (0.68 V at 0.2 A cm−2) and equal to 3,5‐pyridine‐based high solids membranes. Furthermore, 2,5‐pyridine copolymer membranes maintained a consistent fuel cell voltage of &gt;0.6 V at 0.2 A cm−2 for over 8600 h under steady‐state operation conditions. Phosphoric acid loss was monitored during long‐term studies and demonstrated acid losses as low as 5.55 ng cm−2 h−1. The high‐temperature creep resistance and long‐term operational stabilities of the 2,5‐pyridine copolymer membranes suggest that they are excellent candidates for use in extended lifetime electrochemical applications.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/fuce.201400129</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-6846
ispartof Fuel cells (Weinheim an der Bergstrasse, Germany), 2015-02, Vol.15 (1), p.150-155
issn 1615-6846
1615-6854
language eng
recordid cdi_proquest_journals_1654889540
source Wiley Online Library Journals Frontfile Complete
subjects 2OH-PBI
Copolymers
Creep Compliance
Creep Compliance, Fuel Cell, Membrane Creep, Meta‐PBI, 2OH‐PBI, Para‐PBI, PBI
Fuel Cell
Fuel cells
Membrane Creep
Meta-PBI
Para-PBI
PBI
PBI Copolymers
PEM
Phosphoric Acid
Polybenzimidazole
Polymer Electrolyte Membrane
PPA Process
Pyridine PBI
title High Polymer Content 2,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Polymer%20Content%202,5-Pyridine-Polybenzimidazole%20Copolymer%20Membranes%20with%20Improved%20Compressive%20Properties&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Molleo,%20M.%20A.&rft.date=2015-02&rft.volume=15&rft.issue=1&rft.spage=150&rft.epage=155&rft.pages=150-155&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.201400129&rft_dat=%3Cproquest_cross%3E3589177661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654889540&rft_id=info:pmid/&rfr_iscdi=true