High Polymer Content 2,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties
Three series of polybenzimidazole (PBI) random copolymers (2,5‐pyridine‐r‐meta‐PBI, 2,5‐pyridine‐r‐para‐PBI, and 2,5‐pyridine‐r‐2OH‐PBI) were synthesized and cast into phosphoric acid (PA) doped membranes using the PolyPhosphoric Acid (PPA) Process. Copolymer composition was adjusted using co‐monome...
Gespeichert in:
Veröffentlicht in: | Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2015-02, Vol.15 (1), p.150-155 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 155 |
---|---|
container_issue | 1 |
container_start_page | 150 |
container_title | Fuel cells (Weinheim an der Bergstrasse, Germany) |
container_volume | 15 |
creator | Molleo, M. A. Chen, X. Ploehn, H. J. Benicewicz, B. C. |
description | Three series of polybenzimidazole (PBI) random copolymers (2,5‐pyridine‐r‐meta‐PBI, 2,5‐pyridine‐r‐para‐PBI, and 2,5‐pyridine‐r‐2OH‐PBI) were synthesized and cast into phosphoric acid (PA) doped membranes using the PolyPhosphoric Acid (PPA) Process. Copolymer composition was adjusted using co‐monomers that impart high and low solubility characteristics to simultaneously control overall copolymer solubility and gel membrane stability. Measured under a static compressive force at 180 °C, copolymer membranes generally exhibited decreased creep compliance with increasing polymer content. Within each series of copolymer membranes, increasing polymer contents proportionally reduced the phosphoric acid/polymer repeat unit (PA/PRU) ratios and their respective proton conductivities. Some copolymer membranes exhibited comparable fuel cell performances (up to 0.66 V at 0.2 A cm−2 following break‐in) to para‐PBI (0.68 V at 0.2 A cm−2) and equal to 3,5‐pyridine‐based high solids membranes. Furthermore, 2,5‐pyridine copolymer membranes maintained a consistent fuel cell voltage of >0.6 V at 0.2 A cm−2 for over 8600 h under steady‐state operation conditions. Phosphoric acid loss was monitored during long‐term studies and demonstrated acid losses as low as 5.55 ng cm−2 h−1. The high‐temperature creep resistance and long‐term operational stabilities of the 2,5‐pyridine copolymer membranes suggest that they are excellent candidates for use in extended lifetime electrochemical applications. |
doi_str_mv | 10.1002/fuce.201400129 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1654889540</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3589177661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4629-c42ba54ddbef4f2b12b492fcba6f14d5321399bc22e104fda7d4f075e506bed43</originalsourceid><addsrcrecordid>eNqFkMlOwzAURSMEEuOWdSS2pNiOnWEJER2kAkEMXVpx_EwNGYqdAu3X4ypVxY6NfSWf4_d0Pe8cowFGiFypZQkDgjBFCJN0zzvCEWZBlDC6v8s0OvSOrX13SJwk9Mirxvpt7udttarB-FnbdNB0PrlkQb4yWuoGgs2jgGatay2LdVuBwxZb4Q5qYYoGrP-tu7k_qRem_QLpCJfAWv0Ffm7aBZhOgz31DlRRWTjb3ifey_D2ORsH04fRJLueBiWNSOpOIgpGpRSgqCICE0FTokpRRApTyUKCwzQVJSGAEVWyiCVVKGbAUCRA0vDEu-j_ddt8LsF2_L1dmsaN5DhiNElSRpGjBj1VmtZaA4ovjK4Ls-IY8U2jfNMo3zXqhLQXvnUFq39oPnzJbv-6Qe9q28HPzi3MB4_iMGZ8dj_ij69POc6SGz4LfwHEQ4vR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1654889540</pqid></control><display><type>article</type><title>High Polymer Content 2,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Molleo, M. A. ; Chen, X. ; Ploehn, H. J. ; Benicewicz, B. C.</creator><creatorcontrib>Molleo, M. A. ; Chen, X. ; Ploehn, H. J. ; Benicewicz, B. C.</creatorcontrib><description>Three series of polybenzimidazole (PBI) random copolymers (2,5‐pyridine‐r‐meta‐PBI, 2,5‐pyridine‐r‐para‐PBI, and 2,5‐pyridine‐r‐2OH‐PBI) were synthesized and cast into phosphoric acid (PA) doped membranes using the PolyPhosphoric Acid (PPA) Process. Copolymer composition was adjusted using co‐monomers that impart high and low solubility characteristics to simultaneously control overall copolymer solubility and gel membrane stability. Measured under a static compressive force at 180 °C, copolymer membranes generally exhibited decreased creep compliance with increasing polymer content. Within each series of copolymer membranes, increasing polymer contents proportionally reduced the phosphoric acid/polymer repeat unit (PA/PRU) ratios and their respective proton conductivities. Some copolymer membranes exhibited comparable fuel cell performances (up to 0.66 V at 0.2 A cm−2 following break‐in) to para‐PBI (0.68 V at 0.2 A cm−2) and equal to 3,5‐pyridine‐based high solids membranes. Furthermore, 2,5‐pyridine copolymer membranes maintained a consistent fuel cell voltage of >0.6 V at 0.2 A cm−2 for over 8600 h under steady‐state operation conditions. Phosphoric acid loss was monitored during long‐term studies and demonstrated acid losses as low as 5.55 ng cm−2 h−1. The high‐temperature creep resistance and long‐term operational stabilities of the 2,5‐pyridine copolymer membranes suggest that they are excellent candidates for use in extended lifetime electrochemical applications.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.201400129</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>2OH-PBI ; Copolymers ; Creep Compliance ; Creep Compliance, Fuel Cell, Membrane Creep, Meta‐PBI, 2OH‐PBI, Para‐PBI, PBI ; Fuel Cell ; Fuel cells ; Membrane Creep ; Meta-PBI ; Para-PBI ; PBI ; PBI Copolymers ; PEM ; Phosphoric Acid ; Polybenzimidazole ; Polymer Electrolyte Membrane ; PPA Process ; Pyridine PBI</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2015-02, Vol.15 (1), p.150-155</ispartof><rights>Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4629-c42ba54ddbef4f2b12b492fcba6f14d5321399bc22e104fda7d4f075e506bed43</citedby><cites>FETCH-LOGICAL-c4629-c42ba54ddbef4f2b12b492fcba6f14d5321399bc22e104fda7d4f075e506bed43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Ffuce.201400129$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Ffuce.201400129$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids></links><search><creatorcontrib>Molleo, M. A.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Ploehn, H. J.</creatorcontrib><creatorcontrib>Benicewicz, B. C.</creatorcontrib><title>High Polymer Content 2,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><addtitle>Fuel Cells</addtitle><description>Three series of polybenzimidazole (PBI) random copolymers (2,5‐pyridine‐r‐meta‐PBI, 2,5‐pyridine‐r‐para‐PBI, and 2,5‐pyridine‐r‐2OH‐PBI) were synthesized and cast into phosphoric acid (PA) doped membranes using the PolyPhosphoric Acid (PPA) Process. Copolymer composition was adjusted using co‐monomers that impart high and low solubility characteristics to simultaneously control overall copolymer solubility and gel membrane stability. Measured under a static compressive force at 180 °C, copolymer membranes generally exhibited decreased creep compliance with increasing polymer content. Within each series of copolymer membranes, increasing polymer contents proportionally reduced the phosphoric acid/polymer repeat unit (PA/PRU) ratios and their respective proton conductivities. Some copolymer membranes exhibited comparable fuel cell performances (up to 0.66 V at 0.2 A cm−2 following break‐in) to para‐PBI (0.68 V at 0.2 A cm−2) and equal to 3,5‐pyridine‐based high solids membranes. Furthermore, 2,5‐pyridine copolymer membranes maintained a consistent fuel cell voltage of >0.6 V at 0.2 A cm−2 for over 8600 h under steady‐state operation conditions. Phosphoric acid loss was monitored during long‐term studies and demonstrated acid losses as low as 5.55 ng cm−2 h−1. The high‐temperature creep resistance and long‐term operational stabilities of the 2,5‐pyridine copolymer membranes suggest that they are excellent candidates for use in extended lifetime electrochemical applications.</description><subject>2OH-PBI</subject><subject>Copolymers</subject><subject>Creep Compliance</subject><subject>Creep Compliance, Fuel Cell, Membrane Creep, Meta‐PBI, 2OH‐PBI, Para‐PBI, PBI</subject><subject>Fuel Cell</subject><subject>Fuel cells</subject><subject>Membrane Creep</subject><subject>Meta-PBI</subject><subject>Para-PBI</subject><subject>PBI</subject><subject>PBI Copolymers</subject><subject>PEM</subject><subject>Phosphoric Acid</subject><subject>Polybenzimidazole</subject><subject>Polymer Electrolyte Membrane</subject><subject>PPA Process</subject><subject>Pyridine PBI</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMlOwzAURSMEEuOWdSS2pNiOnWEJER2kAkEMXVpx_EwNGYqdAu3X4ypVxY6NfSWf4_d0Pe8cowFGiFypZQkDgjBFCJN0zzvCEWZBlDC6v8s0OvSOrX13SJwk9Mirxvpt7udttarB-FnbdNB0PrlkQb4yWuoGgs2jgGatay2LdVuBwxZb4Q5qYYoGrP-tu7k_qRem_QLpCJfAWv0Ffm7aBZhOgz31DlRRWTjb3ifey_D2ORsH04fRJLueBiWNSOpOIgpGpRSgqCICE0FTokpRRApTyUKCwzQVJSGAEVWyiCVVKGbAUCRA0vDEu-j_ddt8LsF2_L1dmsaN5DhiNElSRpGjBj1VmtZaA4ovjK4Ls-IY8U2jfNMo3zXqhLQXvnUFq39oPnzJbv-6Qe9q28HPzi3MB4_iMGZ8dj_ij69POc6SGz4LfwHEQ4vR</recordid><startdate>201502</startdate><enddate>201502</enddate><creator>Molleo, M. A.</creator><creator>Chen, X.</creator><creator>Ploehn, H. J.</creator><creator>Benicewicz, B. C.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201502</creationdate><title>High Polymer Content 2,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties</title><author>Molleo, M. A. ; Chen, X. ; Ploehn, H. J. ; Benicewicz, B. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4629-c42ba54ddbef4f2b12b492fcba6f14d5321399bc22e104fda7d4f075e506bed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>2OH-PBI</topic><topic>Copolymers</topic><topic>Creep Compliance</topic><topic>Creep Compliance, Fuel Cell, Membrane Creep, Meta‐PBI, 2OH‐PBI, Para‐PBI, PBI</topic><topic>Fuel Cell</topic><topic>Fuel cells</topic><topic>Membrane Creep</topic><topic>Meta-PBI</topic><topic>Para-PBI</topic><topic>PBI</topic><topic>PBI Copolymers</topic><topic>PEM</topic><topic>Phosphoric Acid</topic><topic>Polybenzimidazole</topic><topic>Polymer Electrolyte Membrane</topic><topic>PPA Process</topic><topic>Pyridine PBI</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Molleo, M. A.</creatorcontrib><creatorcontrib>Chen, X.</creatorcontrib><creatorcontrib>Ploehn, H. J.</creatorcontrib><creatorcontrib>Benicewicz, B. C.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Molleo, M. A.</au><au>Chen, X.</au><au>Ploehn, H. J.</au><au>Benicewicz, B. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Polymer Content 2,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Fuel Cells</addtitle><date>2015-02</date><risdate>2015</risdate><volume>15</volume><issue>1</issue><spage>150</spage><epage>155</epage><pages>150-155</pages><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>Three series of polybenzimidazole (PBI) random copolymers (2,5‐pyridine‐r‐meta‐PBI, 2,5‐pyridine‐r‐para‐PBI, and 2,5‐pyridine‐r‐2OH‐PBI) were synthesized and cast into phosphoric acid (PA) doped membranes using the PolyPhosphoric Acid (PPA) Process. Copolymer composition was adjusted using co‐monomers that impart high and low solubility characteristics to simultaneously control overall copolymer solubility and gel membrane stability. Measured under a static compressive force at 180 °C, copolymer membranes generally exhibited decreased creep compliance with increasing polymer content. Within each series of copolymer membranes, increasing polymer contents proportionally reduced the phosphoric acid/polymer repeat unit (PA/PRU) ratios and their respective proton conductivities. Some copolymer membranes exhibited comparable fuel cell performances (up to 0.66 V at 0.2 A cm−2 following break‐in) to para‐PBI (0.68 V at 0.2 A cm−2) and equal to 3,5‐pyridine‐based high solids membranes. Furthermore, 2,5‐pyridine copolymer membranes maintained a consistent fuel cell voltage of >0.6 V at 0.2 A cm−2 for over 8600 h under steady‐state operation conditions. Phosphoric acid loss was monitored during long‐term studies and demonstrated acid losses as low as 5.55 ng cm−2 h−1. The high‐temperature creep resistance and long‐term operational stabilities of the 2,5‐pyridine copolymer membranes suggest that they are excellent candidates for use in extended lifetime electrochemical applications.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/fuce.201400129</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-6846 |
ispartof | Fuel cells (Weinheim an der Bergstrasse, Germany), 2015-02, Vol.15 (1), p.150-155 |
issn | 1615-6846 1615-6854 |
language | eng |
recordid | cdi_proquest_journals_1654889540 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | 2OH-PBI Copolymers Creep Compliance Creep Compliance, Fuel Cell, Membrane Creep, Meta‐PBI, 2OH‐PBI, Para‐PBI, PBI Fuel Cell Fuel cells Membrane Creep Meta-PBI Para-PBI PBI PBI Copolymers PEM Phosphoric Acid Polybenzimidazole Polymer Electrolyte Membrane PPA Process Pyridine PBI |
title | High Polymer Content 2,5-Pyridine-Polybenzimidazole Copolymer Membranes with Improved Compressive Properties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T02%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Polymer%20Content%202,5-Pyridine-Polybenzimidazole%20Copolymer%20Membranes%20with%20Improved%20Compressive%20Properties&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Molleo,%20M.%20A.&rft.date=2015-02&rft.volume=15&rft.issue=1&rft.spage=150&rft.epage=155&rft.pages=150-155&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.201400129&rft_dat=%3Cproquest_cross%3E3589177661%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1654889540&rft_id=info:pmid/&rfr_iscdi=true |