A Quasi-Parametric Method for Fitting Flexible Item Response Functions

If standard two-parameter item response functions are employed in the analysis of a test with some newly constructed items, it can be expected that, for some items, the item response function (IRF) will not flt the data well. This lack of fit can also occur when standard IRFs are fitted to personali...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of educational and behavioral statistics 2015-02, Vol.40 (1), p.5-34
Hauptverfasser: Liang, Longjuan, Browne, Michael W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 1
container_start_page 5
container_title Journal of educational and behavioral statistics
container_volume 40
creator Liang, Longjuan
Browne, Michael W.
description If standard two-parameter item response functions are employed in the analysis of a test with some newly constructed items, it can be expected that, for some items, the item response function (IRF) will not flt the data well. This lack of fit can also occur when standard IRFs are fitted to personality or psychopathology items. When investigating reasons for misfit, it is helpful to compare item response curves (IRCs) visually to detect outlier items. This is only feasible if the IRF employed is sufficiently flexible to display deviations in shape from the norm. A quasi-parametric IRF that can be made arbitrarily flexible by increasing the number of parameters is proposed for this purpose. To take capitalization on chance into account, the use of Akaike information criterion or Bayesian information criterion goodness of approximation measures is recommended for suggesting the number of parameters to be retained. These measures balance the effect on fit of random error of estimation against systematic error of approximation. Computational aspects are considered and efficacy of the methodology developed is demonstrated.
doi_str_mv 10.3102/1076998614556816
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1651836182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1049766</ericid><jstor_id>43966367</jstor_id><sage_id>10.3102_1076998614556816</sage_id><sourcerecordid>43966367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-6e2d9c1ee559e9ca2567002a44efa0495a3e49fd7de7d9793d59d2e39f641b5f3</originalsourceid><addsrcrecordid>eNqFUMtKw0AUHUTBWt27EQZcR-dmHsksSzFaqfhA12Ga3KkpbVJnJqB_75RIETeu7oHzuhxCzoFdcWDpNbBMaZ0rEFKqHNQBGYHmMgEmxWHEkU52_DE58X7FGPBU8BEpJvS5N75JnowzGwyuqegDhveuprZztGhCaNolLdb42SzWSGcBN_QF_bZrPdKib6vQRHhKjqxZezz7uWPyVty8Tu-S-ePtbDqZJxWXPCQK01pXgCilRl2ZVKqMsdQIgdYwoaXhKLStsxqzWmea11LXKXJtlYCFtHxMLofcres-evShXHW9a2NlCUpCzhXkaVSxQVW5znuHtty6ZmPcVwms3K1V_l0rWi4GC8YF9vKbe4hfZWrHJwPvzRJ_lf6bt_Khc_tAwXUMUxn_BrUhe3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651836182</pqid></control><display><type>article</type><title>A Quasi-Parametric Method for Fitting Flexible Item Response Functions</title><source>JSTOR Mathematics &amp; Statistics</source><source>SAGE Complete A-Z List</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Liang, Longjuan ; Browne, Michael W.</creator><creatorcontrib>Liang, Longjuan ; Browne, Michael W.</creatorcontrib><description>If standard two-parameter item response functions are employed in the analysis of a test with some newly constructed items, it can be expected that, for some items, the item response function (IRF) will not flt the data well. This lack of fit can also occur when standard IRFs are fitted to personality or psychopathology items. When investigating reasons for misfit, it is helpful to compare item response curves (IRCs) visually to detect outlier items. This is only feasible if the IRF employed is sufficiently flexible to display deviations in shape from the norm. A quasi-parametric IRF that can be made arbitrarily flexible by increasing the number of parameters is proposed for this purpose. To take capitalization on chance into account, the use of Akaike information criterion or Bayesian information criterion goodness of approximation measures is recommended for suggesting the number of parameters to be retained. These measures balance the effect on fit of random error of estimation against systematic error of approximation. Computational aspects are considered and efficacy of the methodology developed is demonstrated.</description><identifier>ISSN: 1076-9986</identifier><identifier>EISSN: 1935-1054</identifier><identifier>DOI: 10.3102/1076998614556816</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Bayesian Statistics ; Capitalization ; Communication research ; Computation ; Error of Measurement ; Goodness of Fit ; Information ; Item Response Theory ; Nonparametric Statistics ; Personality ; Psychopathology ; Simulation ; Statistical Analysis</subject><ispartof>Journal of educational and behavioral statistics, 2015-02, Vol.40 (1), p.5-34</ispartof><rights>Copyright © 2015 American Educational Research Association</rights><rights>2014 AERA</rights><rights>Copyright American Educational Research Association Feb 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-6e2d9c1ee559e9ca2567002a44efa0495a3e49fd7de7d9793d59d2e39f641b5f3</citedby><cites>FETCH-LOGICAL-c353t-6e2d9c1ee559e9ca2567002a44efa0495a3e49fd7de7d9793d59d2e39f641b5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43966367$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43966367$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,21799,27903,27904,43600,43601,57996,58000,58229,58233</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1049766$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Longjuan</creatorcontrib><creatorcontrib>Browne, Michael W.</creatorcontrib><title>A Quasi-Parametric Method for Fitting Flexible Item Response Functions</title><title>Journal of educational and behavioral statistics</title><description>If standard two-parameter item response functions are employed in the analysis of a test with some newly constructed items, it can be expected that, for some items, the item response function (IRF) will not flt the data well. This lack of fit can also occur when standard IRFs are fitted to personality or psychopathology items. When investigating reasons for misfit, it is helpful to compare item response curves (IRCs) visually to detect outlier items. This is only feasible if the IRF employed is sufficiently flexible to display deviations in shape from the norm. A quasi-parametric IRF that can be made arbitrarily flexible by increasing the number of parameters is proposed for this purpose. To take capitalization on chance into account, the use of Akaike information criterion or Bayesian information criterion goodness of approximation measures is recommended for suggesting the number of parameters to be retained. These measures balance the effect on fit of random error of estimation against systematic error of approximation. Computational aspects are considered and efficacy of the methodology developed is demonstrated.</description><subject>Bayesian Statistics</subject><subject>Capitalization</subject><subject>Communication research</subject><subject>Computation</subject><subject>Error of Measurement</subject><subject>Goodness of Fit</subject><subject>Information</subject><subject>Item Response Theory</subject><subject>Nonparametric Statistics</subject><subject>Personality</subject><subject>Psychopathology</subject><subject>Simulation</subject><subject>Statistical Analysis</subject><issn>1076-9986</issn><issn>1935-1054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKw0AUHUTBWt27EQZcR-dmHsksSzFaqfhA12Ga3KkpbVJnJqB_75RIETeu7oHzuhxCzoFdcWDpNbBMaZ0rEFKqHNQBGYHmMgEmxWHEkU52_DE58X7FGPBU8BEpJvS5N75JnowzGwyuqegDhveuprZztGhCaNolLdb42SzWSGcBN_QF_bZrPdKib6vQRHhKjqxZezz7uWPyVty8Tu-S-ePtbDqZJxWXPCQK01pXgCilRl2ZVKqMsdQIgdYwoaXhKLStsxqzWmea11LXKXJtlYCFtHxMLofcres-evShXHW9a2NlCUpCzhXkaVSxQVW5znuHtty6ZmPcVwms3K1V_l0rWi4GC8YF9vKbe4hfZWrHJwPvzRJ_lf6bt_Khc_tAwXUMUxn_BrUhe3Y</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Liang, Longjuan</creator><creator>Browne, Michael W.</creator><general>SAGE Publications</general><general>American Educational Research Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150201</creationdate><title>A Quasi-Parametric Method for Fitting Flexible Item Response Functions</title><author>Liang, Longjuan ; Browne, Michael W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-6e2d9c1ee559e9ca2567002a44efa0495a3e49fd7de7d9793d59d2e39f641b5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayesian Statistics</topic><topic>Capitalization</topic><topic>Communication research</topic><topic>Computation</topic><topic>Error of Measurement</topic><topic>Goodness of Fit</topic><topic>Information</topic><topic>Item Response Theory</topic><topic>Nonparametric Statistics</topic><topic>Personality</topic><topic>Psychopathology</topic><topic>Simulation</topic><topic>Statistical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Longjuan</creatorcontrib><creatorcontrib>Browne, Michael W.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>Journal of educational and behavioral statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Longjuan</au><au>Browne, Michael W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1049766</ericid><atitle>A Quasi-Parametric Method for Fitting Flexible Item Response Functions</atitle><jtitle>Journal of educational and behavioral statistics</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>40</volume><issue>1</issue><spage>5</spage><epage>34</epage><pages>5-34</pages><issn>1076-9986</issn><eissn>1935-1054</eissn><abstract>If standard two-parameter item response functions are employed in the analysis of a test with some newly constructed items, it can be expected that, for some items, the item response function (IRF) will not flt the data well. This lack of fit can also occur when standard IRFs are fitted to personality or psychopathology items. When investigating reasons for misfit, it is helpful to compare item response curves (IRCs) visually to detect outlier items. This is only feasible if the IRF employed is sufficiently flexible to display deviations in shape from the norm. A quasi-parametric IRF that can be made arbitrarily flexible by increasing the number of parameters is proposed for this purpose. To take capitalization on chance into account, the use of Akaike information criterion or Bayesian information criterion goodness of approximation measures is recommended for suggesting the number of parameters to be retained. These measures balance the effect on fit of random error of estimation against systematic error of approximation. Computational aspects are considered and efficacy of the methodology developed is demonstrated.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.3102/1076998614556816</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1076-9986
ispartof Journal of educational and behavioral statistics, 2015-02, Vol.40 (1), p.5-34
issn 1076-9986
1935-1054
language eng
recordid cdi_proquest_journals_1651836182
source JSTOR Mathematics & Statistics; SAGE Complete A-Z List; Jstor Complete Legacy; Alma/SFX Local Collection
subjects Bayesian Statistics
Capitalization
Communication research
Computation
Error of Measurement
Goodness of Fit
Information
Item Response Theory
Nonparametric Statistics
Personality
Psychopathology
Simulation
Statistical Analysis
title A Quasi-Parametric Method for Fitting Flexible Item Response Functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Quasi-Parametric%20Method%20for%20Fitting%20Flexible%20Item%20Response%20Functions&rft.jtitle=Journal%20of%20educational%20and%20behavioral%20statistics&rft.au=Liang,%20Longjuan&rft.date=2015-02-01&rft.volume=40&rft.issue=1&rft.spage=5&rft.epage=34&rft.pages=5-34&rft.issn=1076-9986&rft.eissn=1935-1054&rft_id=info:doi/10.3102/1076998614556816&rft_dat=%3Cjstor_proqu%3E43966367%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651836182&rft_id=info:pmid/&rft_ericid=EJ1049766&rft_jstor_id=43966367&rft_sage_id=10.3102_1076998614556816&rfr_iscdi=true