A Quasi-Parametric Method for Fitting Flexible Item Response Functions
If standard two-parameter item response functions are employed in the analysis of a test with some newly constructed items, it can be expected that, for some items, the item response function (IRF) will not flt the data well. This lack of fit can also occur when standard IRFs are fitted to personali...
Gespeichert in:
Veröffentlicht in: | Journal of educational and behavioral statistics 2015-02, Vol.40 (1), p.5-34 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 34 |
---|---|
container_issue | 1 |
container_start_page | 5 |
container_title | Journal of educational and behavioral statistics |
container_volume | 40 |
creator | Liang, Longjuan Browne, Michael W. |
description | If standard two-parameter item response functions are employed in the analysis of a test with some newly constructed items, it can be expected that, for some items, the item response function (IRF) will not flt the data well. This lack of fit can also occur when standard IRFs are fitted to personality or psychopathology items. When investigating reasons for misfit, it is helpful to compare item response curves (IRCs) visually to detect outlier items. This is only feasible if the IRF employed is sufficiently flexible to display deviations in shape from the norm. A quasi-parametric IRF that can be made arbitrarily flexible by increasing the number of parameters is proposed for this purpose. To take capitalization on chance into account, the use of Akaike information criterion or Bayesian information criterion goodness of approximation measures is recommended for suggesting the number of parameters to be retained. These measures balance the effect on fit of random error of estimation against systematic error of approximation. Computational aspects are considered and efficacy of the methodology developed is demonstrated. |
doi_str_mv | 10.3102/1076998614556816 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1651836182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ericid>EJ1049766</ericid><jstor_id>43966367</jstor_id><sage_id>10.3102_1076998614556816</sage_id><sourcerecordid>43966367</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-6e2d9c1ee559e9ca2567002a44efa0495a3e49fd7de7d9793d59d2e39f641b5f3</originalsourceid><addsrcrecordid>eNqFUMtKw0AUHUTBWt27EQZcR-dmHsksSzFaqfhA12Ga3KkpbVJnJqB_75RIETeu7oHzuhxCzoFdcWDpNbBMaZ0rEFKqHNQBGYHmMgEmxWHEkU52_DE58X7FGPBU8BEpJvS5N75JnowzGwyuqegDhveuprZztGhCaNolLdb42SzWSGcBN_QF_bZrPdKib6vQRHhKjqxZezz7uWPyVty8Tu-S-ePtbDqZJxWXPCQK01pXgCilRl2ZVKqMsdQIgdYwoaXhKLStsxqzWmea11LXKXJtlYCFtHxMLofcres-evShXHW9a2NlCUpCzhXkaVSxQVW5znuHtty6ZmPcVwms3K1V_l0rWi4GC8YF9vKbe4hfZWrHJwPvzRJ_lf6bt_Khc_tAwXUMUxn_BrUhe3Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1651836182</pqid></control><display><type>article</type><title>A Quasi-Parametric Method for Fitting Flexible Item Response Functions</title><source>JSTOR Mathematics & Statistics</source><source>SAGE Complete A-Z List</source><source>Jstor Complete Legacy</source><source>Alma/SFX Local Collection</source><creator>Liang, Longjuan ; Browne, Michael W.</creator><creatorcontrib>Liang, Longjuan ; Browne, Michael W.</creatorcontrib><description>If standard two-parameter item response functions are employed in the analysis of a test with some newly constructed items, it can be expected that, for some items, the item response function (IRF) will not flt the data well. This lack of fit can also occur when standard IRFs are fitted to personality or psychopathology items. When investigating reasons for misfit, it is helpful to compare item response curves (IRCs) visually to detect outlier items. This is only feasible if the IRF employed is sufficiently flexible to display deviations in shape from the norm. A quasi-parametric IRF that can be made arbitrarily flexible by increasing the number of parameters is proposed for this purpose. To take capitalization on chance into account, the use of Akaike information criterion or Bayesian information criterion goodness of approximation measures is recommended for suggesting the number of parameters to be retained. These measures balance the effect on fit of random error of estimation against systematic error of approximation. Computational aspects are considered and efficacy of the methodology developed is demonstrated.</description><identifier>ISSN: 1076-9986</identifier><identifier>EISSN: 1935-1054</identifier><identifier>DOI: 10.3102/1076998614556816</identifier><language>eng</language><publisher>Los Angeles, CA: SAGE Publications</publisher><subject>Bayesian Statistics ; Capitalization ; Communication research ; Computation ; Error of Measurement ; Goodness of Fit ; Information ; Item Response Theory ; Nonparametric Statistics ; Personality ; Psychopathology ; Simulation ; Statistical Analysis</subject><ispartof>Journal of educational and behavioral statistics, 2015-02, Vol.40 (1), p.5-34</ispartof><rights>Copyright © 2015 American Educational Research Association</rights><rights>2014 AERA</rights><rights>Copyright American Educational Research Association Feb 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-6e2d9c1ee559e9ca2567002a44efa0495a3e49fd7de7d9793d59d2e39f641b5f3</citedby><cites>FETCH-LOGICAL-c353t-6e2d9c1ee559e9ca2567002a44efa0495a3e49fd7de7d9793d59d2e39f641b5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43966367$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43966367$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,21799,27903,27904,43600,43601,57996,58000,58229,58233</link.rule.ids><backlink>$$Uhttp://eric.ed.gov/ERICWebPortal/detail?accno=EJ1049766$$DView record in ERIC$$Hfree_for_read</backlink></links><search><creatorcontrib>Liang, Longjuan</creatorcontrib><creatorcontrib>Browne, Michael W.</creatorcontrib><title>A Quasi-Parametric Method for Fitting Flexible Item Response Functions</title><title>Journal of educational and behavioral statistics</title><description>If standard two-parameter item response functions are employed in the analysis of a test with some newly constructed items, it can be expected that, for some items, the item response function (IRF) will not flt the data well. This lack of fit can also occur when standard IRFs are fitted to personality or psychopathology items. When investigating reasons for misfit, it is helpful to compare item response curves (IRCs) visually to detect outlier items. This is only feasible if the IRF employed is sufficiently flexible to display deviations in shape from the norm. A quasi-parametric IRF that can be made arbitrarily flexible by increasing the number of parameters is proposed for this purpose. To take capitalization on chance into account, the use of Akaike information criterion or Bayesian information criterion goodness of approximation measures is recommended for suggesting the number of parameters to be retained. These measures balance the effect on fit of random error of estimation against systematic error of approximation. Computational aspects are considered and efficacy of the methodology developed is demonstrated.</description><subject>Bayesian Statistics</subject><subject>Capitalization</subject><subject>Communication research</subject><subject>Computation</subject><subject>Error of Measurement</subject><subject>Goodness of Fit</subject><subject>Information</subject><subject>Item Response Theory</subject><subject>Nonparametric Statistics</subject><subject>Personality</subject><subject>Psychopathology</subject><subject>Simulation</subject><subject>Statistical Analysis</subject><issn>1076-9986</issn><issn>1935-1054</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFUMtKw0AUHUTBWt27EQZcR-dmHsksSzFaqfhA12Ga3KkpbVJnJqB_75RIETeu7oHzuhxCzoFdcWDpNbBMaZ0rEFKqHNQBGYHmMgEmxWHEkU52_DE58X7FGPBU8BEpJvS5N75JnowzGwyuqegDhveuprZztGhCaNolLdb42SzWSGcBN_QF_bZrPdKib6vQRHhKjqxZezz7uWPyVty8Tu-S-ePtbDqZJxWXPCQK01pXgCilRl2ZVKqMsdQIgdYwoaXhKLStsxqzWmea11LXKXJtlYCFtHxMLofcres-evShXHW9a2NlCUpCzhXkaVSxQVW5znuHtty6ZmPcVwms3K1V_l0rWi4GC8YF9vKbe4hfZWrHJwPvzRJ_lf6bt_Khc_tAwXUMUxn_BrUhe3Y</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Liang, Longjuan</creator><creator>Browne, Michael W.</creator><general>SAGE Publications</general><general>American Educational Research Association</general><scope>7SW</scope><scope>BJH</scope><scope>BNH</scope><scope>BNI</scope><scope>BNJ</scope><scope>BNO</scope><scope>ERI</scope><scope>PET</scope><scope>REK</scope><scope>WWN</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20150201</creationdate><title>A Quasi-Parametric Method for Fitting Flexible Item Response Functions</title><author>Liang, Longjuan ; Browne, Michael W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-6e2d9c1ee559e9ca2567002a44efa0495a3e49fd7de7d9793d59d2e39f641b5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bayesian Statistics</topic><topic>Capitalization</topic><topic>Communication research</topic><topic>Computation</topic><topic>Error of Measurement</topic><topic>Goodness of Fit</topic><topic>Information</topic><topic>Item Response Theory</topic><topic>Nonparametric Statistics</topic><topic>Personality</topic><topic>Psychopathology</topic><topic>Simulation</topic><topic>Statistical Analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Longjuan</creatorcontrib><creatorcontrib>Browne, Michael W.</creatorcontrib><collection>ERIC</collection><collection>ERIC (Ovid)</collection><collection>ERIC</collection><collection>ERIC</collection><collection>ERIC (Legacy Platform)</collection><collection>ERIC( SilverPlatter )</collection><collection>ERIC</collection><collection>ERIC PlusText (Legacy Platform)</collection><collection>Education Resources Information Center (ERIC)</collection><collection>ERIC</collection><collection>CrossRef</collection><jtitle>Journal of educational and behavioral statistics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Longjuan</au><au>Browne, Michael W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><ericid>EJ1049766</ericid><atitle>A Quasi-Parametric Method for Fitting Flexible Item Response Functions</atitle><jtitle>Journal of educational and behavioral statistics</jtitle><date>2015-02-01</date><risdate>2015</risdate><volume>40</volume><issue>1</issue><spage>5</spage><epage>34</epage><pages>5-34</pages><issn>1076-9986</issn><eissn>1935-1054</eissn><abstract>If standard two-parameter item response functions are employed in the analysis of a test with some newly constructed items, it can be expected that, for some items, the item response function (IRF) will not flt the data well. This lack of fit can also occur when standard IRFs are fitted to personality or psychopathology items. When investigating reasons for misfit, it is helpful to compare item response curves (IRCs) visually to detect outlier items. This is only feasible if the IRF employed is sufficiently flexible to display deviations in shape from the norm. A quasi-parametric IRF that can be made arbitrarily flexible by increasing the number of parameters is proposed for this purpose. To take capitalization on chance into account, the use of Akaike information criterion or Bayesian information criterion goodness of approximation measures is recommended for suggesting the number of parameters to be retained. These measures balance the effect on fit of random error of estimation against systematic error of approximation. Computational aspects are considered and efficacy of the methodology developed is demonstrated.</abstract><cop>Los Angeles, CA</cop><pub>SAGE Publications</pub><doi>10.3102/1076998614556816</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-9986 |
ispartof | Journal of educational and behavioral statistics, 2015-02, Vol.40 (1), p.5-34 |
issn | 1076-9986 1935-1054 |
language | eng |
recordid | cdi_proquest_journals_1651836182 |
source | JSTOR Mathematics & Statistics; SAGE Complete A-Z List; Jstor Complete Legacy; Alma/SFX Local Collection |
subjects | Bayesian Statistics Capitalization Communication research Computation Error of Measurement Goodness of Fit Information Item Response Theory Nonparametric Statistics Personality Psychopathology Simulation Statistical Analysis |
title | A Quasi-Parametric Method for Fitting Flexible Item Response Functions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T18%3A35%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Quasi-Parametric%20Method%20for%20Fitting%20Flexible%20Item%20Response%20Functions&rft.jtitle=Journal%20of%20educational%20and%20behavioral%20statistics&rft.au=Liang,%20Longjuan&rft.date=2015-02-01&rft.volume=40&rft.issue=1&rft.spage=5&rft.epage=34&rft.pages=5-34&rft.issn=1076-9986&rft.eissn=1935-1054&rft_id=info:doi/10.3102/1076998614556816&rft_dat=%3Cjstor_proqu%3E43966367%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1651836182&rft_id=info:pmid/&rft_ericid=EJ1049766&rft_jstor_id=43966367&rft_sage_id=10.3102_1076998614556816&rfr_iscdi=true |