Exploring Robust Diagnostic Signatures for Cutaneous Melanoma Utilizing Genetic and Imaging Data

Multimodal data combined in an integrated dataset can be used to aim the identification of instrumental biological actions that trigger the development of a disease. In this paper, we use an integrated dataset related to cutaneous melanoma that fuses two separate sets providing complementary informa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2015-01, Vol.19 (1), p.190-198
Hauptverfasser: Valavanis, Ioannis, Maglogiannis, Ilias, Chatziioannou, Aristotelis A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 198
container_issue 1
container_start_page 190
container_title IEEE journal of biomedical and health informatics
container_volume 19
creator Valavanis, Ioannis
Maglogiannis, Ilias
Chatziioannou, Aristotelis A.
description Multimodal data combined in an integrated dataset can be used to aim the identification of instrumental biological actions that trigger the development of a disease. In this paper, we use an integrated dataset related to cutaneous melanoma that fuses two separate sets providing complementary information (gene expression profiling and imaging). Our first goal is to select a subset of genes that comprise candidate genetic biomarkers. The derived gene signature is then utilized in order to select imaging features, which characterize disease at a macroscopic level, presenting the highest, mutual information content to the selected genes. Using information gain ratio measurements and exploration of the gene ontology tree, we identified a set of 32 uncorrelated genes with a pivotal role as regards molecular regulation of melanoma, which expression across samples correlates highly with the different pathological states. These genes steered the selection of a subset of uncorrelated imaging features based on their ranking according to mutual information measurements to the selected gene expression values. Selected genes and imaging features were used to train various classifiers that could generalize well when discriminating malignant from benign melanoma samples. Results on the selection on imaging features and classification were compared to feature selection based on a straight forward statistical selection and a stochastic-based methodology. Genes in the backstage of low-level biological processes showed to carry higher information content than the macroscopic imaging features.
doi_str_mv 10.1109/JBHI.2014.2336617
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1650544168</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6849924</ieee_id><sourcerecordid>3577221641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-f5e4c779e270dd2bc85a774592458ef7f1edb3871c6cbe753902619bc07af83c3</originalsourceid><addsrcrecordid>eNpdkUtLxDAQx4MoKuoHEEEKXrzsmlfzOOr6WlEEH-eaptMl0jZr0oL66U3Z1YNzyTD5_YeZ-SN0SPCUEKzP7i5u51OKCZ9SxoQgcgPtUiLUhFKsNn9zovkOOojxHadQqaTFNtqhOU5KRXfR29XnsvHBdYvsyZdD7LNLZxadj72z2bNbdKYfAsSs9iGbDb3pwA8xe4DGdL412WvvGvc9qm-gg1Fjuiqbt2Yx1i5Nb_bRVm2aCAfrdw-9Xl-9zG4n948389n5_cQyrvtJnQO3UmqgElcVLa3KjZQ815TnCmpZE6hKpiSxwpYgc6YxFUSXFktTK2bZHjpd9V0G_zFA7IvWRQtNsxq5IIIzwrlQLKEn_9B3P4QuTZeoHOecpzsliqwoG3yMAepiGVxrwldBcDE6UIwOFKMDxdqBpDledx7KFqo_xe-9E3C0AhwA_H0LxXValP0AtdOJMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1650544168</pqid></control><display><type>article</type><title>Exploring Robust Diagnostic Signatures for Cutaneous Melanoma Utilizing Genetic and Imaging Data</title><source>IEEE Electronic Library (IEL)</source><creator>Valavanis, Ioannis ; Maglogiannis, Ilias ; Chatziioannou, Aristotelis A.</creator><creatorcontrib>Valavanis, Ioannis ; Maglogiannis, Ilias ; Chatziioannou, Aristotelis A.</creatorcontrib><description>Multimodal data combined in an integrated dataset can be used to aim the identification of instrumental biological actions that trigger the development of a disease. In this paper, we use an integrated dataset related to cutaneous melanoma that fuses two separate sets providing complementary information (gene expression profiling and imaging). Our first goal is to select a subset of genes that comprise candidate genetic biomarkers. The derived gene signature is then utilized in order to select imaging features, which characterize disease at a macroscopic level, presenting the highest, mutual information content to the selected genes. Using information gain ratio measurements and exploration of the gene ontology tree, we identified a set of 32 uncorrelated genes with a pivotal role as regards molecular regulation of melanoma, which expression across samples correlates highly with the different pathological states. These genes steered the selection of a subset of uncorrelated imaging features based on their ranking according to mutual information measurements to the selected gene expression values. Selected genes and imaging features were used to train various classifiers that could generalize well when discriminating malignant from benign melanoma samples. Results on the selection on imaging features and classification were compared to feature selection based on a straight forward statistical selection and a stochastic-based methodology. Genes in the backstage of low-level biological processes showed to carry higher information content than the macroscopic imaging features.</description><identifier>ISSN: 2168-2194</identifier><identifier>EISSN: 2168-2208</identifier><identifier>DOI: 10.1109/JBHI.2014.2336617</identifier><identifier>PMID: 25020182</identifier><identifier>CODEN: IJBHA9</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Biomarkers, Tumor - metabolism ; Cancer ; Dermoscopy - methods ; Diagnosis, Computer-Assisted - methods ; Diseases ; Gene expression ; Humans ; Imaging ; Malignant tumors ; Melanoma ; Melanoma - diagnosis ; Melanoma - metabolism ; Neoplasm Proteins - genetics ; Neoplasm Proteins - metabolism ; Reproducibility of Results ; Sensitivity and Specificity ; Skin ; Skin Neoplasms - diagnosis ; Skin Neoplasms - metabolism</subject><ispartof>IEEE journal of biomedical and health informatics, 2015-01, Vol.19 (1), p.190-198</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-f5e4c779e270dd2bc85a774592458ef7f1edb3871c6cbe753902619bc07af83c3</citedby><cites>FETCH-LOGICAL-c349t-f5e4c779e270dd2bc85a774592458ef7f1edb3871c6cbe753902619bc07af83c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6849924$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6849924$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25020182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Valavanis, Ioannis</creatorcontrib><creatorcontrib>Maglogiannis, Ilias</creatorcontrib><creatorcontrib>Chatziioannou, Aristotelis A.</creatorcontrib><title>Exploring Robust Diagnostic Signatures for Cutaneous Melanoma Utilizing Genetic and Imaging Data</title><title>IEEE journal of biomedical and health informatics</title><addtitle>JBHI</addtitle><addtitle>IEEE J Biomed Health Inform</addtitle><description>Multimodal data combined in an integrated dataset can be used to aim the identification of instrumental biological actions that trigger the development of a disease. In this paper, we use an integrated dataset related to cutaneous melanoma that fuses two separate sets providing complementary information (gene expression profiling and imaging). Our first goal is to select a subset of genes that comprise candidate genetic biomarkers. The derived gene signature is then utilized in order to select imaging features, which characterize disease at a macroscopic level, presenting the highest, mutual information content to the selected genes. Using information gain ratio measurements and exploration of the gene ontology tree, we identified a set of 32 uncorrelated genes with a pivotal role as regards molecular regulation of melanoma, which expression across samples correlates highly with the different pathological states. These genes steered the selection of a subset of uncorrelated imaging features based on their ranking according to mutual information measurements to the selected gene expression values. Selected genes and imaging features were used to train various classifiers that could generalize well when discriminating malignant from benign melanoma samples. Results on the selection on imaging features and classification were compared to feature selection based on a straight forward statistical selection and a stochastic-based methodology. Genes in the backstage of low-level biological processes showed to carry higher information content than the macroscopic imaging features.</description><subject>Algorithms</subject><subject>Biomarkers, Tumor - metabolism</subject><subject>Cancer</subject><subject>Dermoscopy - methods</subject><subject>Diagnosis, Computer-Assisted - methods</subject><subject>Diseases</subject><subject>Gene expression</subject><subject>Humans</subject><subject>Imaging</subject><subject>Malignant tumors</subject><subject>Melanoma</subject><subject>Melanoma - diagnosis</subject><subject>Melanoma - metabolism</subject><subject>Neoplasm Proteins - genetics</subject><subject>Neoplasm Proteins - metabolism</subject><subject>Reproducibility of Results</subject><subject>Sensitivity and Specificity</subject><subject>Skin</subject><subject>Skin Neoplasms - diagnosis</subject><subject>Skin Neoplasms - metabolism</subject><issn>2168-2194</issn><issn>2168-2208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkUtLxDAQx4MoKuoHEEEKXrzsmlfzOOr6WlEEH-eaptMl0jZr0oL66U3Z1YNzyTD5_YeZ-SN0SPCUEKzP7i5u51OKCZ9SxoQgcgPtUiLUhFKsNn9zovkOOojxHadQqaTFNtqhOU5KRXfR29XnsvHBdYvsyZdD7LNLZxadj72z2bNbdKYfAsSs9iGbDb3pwA8xe4DGdL412WvvGvc9qm-gg1Fjuiqbt2Yx1i5Nb_bRVm2aCAfrdw-9Xl-9zG4n948389n5_cQyrvtJnQO3UmqgElcVLa3KjZQ815TnCmpZE6hKpiSxwpYgc6YxFUSXFktTK2bZHjpd9V0G_zFA7IvWRQtNsxq5IIIzwrlQLKEn_9B3P4QuTZeoHOecpzsliqwoG3yMAepiGVxrwldBcDE6UIwOFKMDxdqBpDledx7KFqo_xe-9E3C0AhwA_H0LxXValP0AtdOJMA</recordid><startdate>201501</startdate><enddate>201501</enddate><creator>Valavanis, Ioannis</creator><creator>Maglogiannis, Ilias</creator><creator>Chatziioannou, Aristotelis A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201501</creationdate><title>Exploring Robust Diagnostic Signatures for Cutaneous Melanoma Utilizing Genetic and Imaging Data</title><author>Valavanis, Ioannis ; Maglogiannis, Ilias ; Chatziioannou, Aristotelis A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-f5e4c779e270dd2bc85a774592458ef7f1edb3871c6cbe753902619bc07af83c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Biomarkers, Tumor - metabolism</topic><topic>Cancer</topic><topic>Dermoscopy - methods</topic><topic>Diagnosis, Computer-Assisted - methods</topic><topic>Diseases</topic><topic>Gene expression</topic><topic>Humans</topic><topic>Imaging</topic><topic>Malignant tumors</topic><topic>Melanoma</topic><topic>Melanoma - diagnosis</topic><topic>Melanoma - metabolism</topic><topic>Neoplasm Proteins - genetics</topic><topic>Neoplasm Proteins - metabolism</topic><topic>Reproducibility of Results</topic><topic>Sensitivity and Specificity</topic><topic>Skin</topic><topic>Skin Neoplasms - diagnosis</topic><topic>Skin Neoplasms - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valavanis, Ioannis</creatorcontrib><creatorcontrib>Maglogiannis, Ilias</creatorcontrib><creatorcontrib>Chatziioannou, Aristotelis A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE journal of biomedical and health informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Valavanis, Ioannis</au><au>Maglogiannis, Ilias</au><au>Chatziioannou, Aristotelis A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Robust Diagnostic Signatures for Cutaneous Melanoma Utilizing Genetic and Imaging Data</atitle><jtitle>IEEE journal of biomedical and health informatics</jtitle><stitle>JBHI</stitle><addtitle>IEEE J Biomed Health Inform</addtitle><date>2015-01</date><risdate>2015</risdate><volume>19</volume><issue>1</issue><spage>190</spage><epage>198</epage><pages>190-198</pages><issn>2168-2194</issn><eissn>2168-2208</eissn><coden>IJBHA9</coden><abstract>Multimodal data combined in an integrated dataset can be used to aim the identification of instrumental biological actions that trigger the development of a disease. In this paper, we use an integrated dataset related to cutaneous melanoma that fuses two separate sets providing complementary information (gene expression profiling and imaging). Our first goal is to select a subset of genes that comprise candidate genetic biomarkers. The derived gene signature is then utilized in order to select imaging features, which characterize disease at a macroscopic level, presenting the highest, mutual information content to the selected genes. Using information gain ratio measurements and exploration of the gene ontology tree, we identified a set of 32 uncorrelated genes with a pivotal role as regards molecular regulation of melanoma, which expression across samples correlates highly with the different pathological states. These genes steered the selection of a subset of uncorrelated imaging features based on their ranking according to mutual information measurements to the selected gene expression values. Selected genes and imaging features were used to train various classifiers that could generalize well when discriminating malignant from benign melanoma samples. Results on the selection on imaging features and classification were compared to feature selection based on a straight forward statistical selection and a stochastic-based methodology. Genes in the backstage of low-level biological processes showed to carry higher information content than the macroscopic imaging features.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25020182</pmid><doi>10.1109/JBHI.2014.2336617</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2194
ispartof IEEE journal of biomedical and health informatics, 2015-01, Vol.19 (1), p.190-198
issn 2168-2194
2168-2208
language eng
recordid cdi_proquest_journals_1650544168
source IEEE Electronic Library (IEL)
subjects Algorithms
Biomarkers, Tumor - metabolism
Cancer
Dermoscopy - methods
Diagnosis, Computer-Assisted - methods
Diseases
Gene expression
Humans
Imaging
Malignant tumors
Melanoma
Melanoma - diagnosis
Melanoma - metabolism
Neoplasm Proteins - genetics
Neoplasm Proteins - metabolism
Reproducibility of Results
Sensitivity and Specificity
Skin
Skin Neoplasms - diagnosis
Skin Neoplasms - metabolism
title Exploring Robust Diagnostic Signatures for Cutaneous Melanoma Utilizing Genetic and Imaging Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-18T20%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Robust%20Diagnostic%20Signatures%20for%20Cutaneous%20Melanoma%20Utilizing%20Genetic%20and%20Imaging%20Data&rft.jtitle=IEEE%20journal%20of%20biomedical%20and%20health%20informatics&rft.au=Valavanis,%20Ioannis&rft.date=2015-01&rft.volume=19&rft.issue=1&rft.spage=190&rft.epage=198&rft.pages=190-198&rft.issn=2168-2194&rft.eissn=2168-2208&rft.coden=IJBHA9&rft_id=info:doi/10.1109/JBHI.2014.2336617&rft_dat=%3Cproquest_RIE%3E3577221641%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1650544168&rft_id=info:pmid/25020182&rft_ieee_id=6849924&rfr_iscdi=true