Built-in Reliability Design of Highly Integrated Solid-State Power Switches With Metal Bump Interconnects
A stacked substrate-chip-bump-chip-substrate assembly has been demonstrated in the construction of power switch modules with high power density and good electrical performance. In this paper, special effort has been devoted to material selection and geometric shape of the bumps in the design for imp...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2015-05, Vol.30 (5), p.2587-2600 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2600 |
---|---|
container_issue | 5 |
container_start_page | 2587 |
container_title | IEEE transactions on power electronics |
container_volume | 30 |
creator | Jianfeng Li Castellazzi, Alberto Tianxiang Dai Corfield, Martin Solomon, Adane Kassa Johnson, Christopher Mark |
description | A stacked substrate-chip-bump-chip-substrate assembly has been demonstrated in the construction of power switch modules with high power density and good electrical performance. In this paper, special effort has been devoted to material selection and geometric shape of the bumps in the design for improving the thermomechanical reliability of a highly integrated bidirectional switch. Results from 3-D finite-element simulation indicate that for all design cases the maximum von Mises stresses and creep strain accumulations occur in the solder joints used to join bumps on IGBTs during a realistic mission profile, but occur in the solder joints used to join bumps on DBC substrates during accelerated thermal cycling. The results from both the simulation and the accelerated thermal cycling experiments reveal that selection of Cu/Mo/Cu composite brick bumps in the stacked assembly can significantly improve the thermomechanical reliability of both the solder joints and the DBC substrates when compared to Cu cylinder bumps and Cu hollow cylinder bumps reported in previous work. Such results can be attributed to the effective reduction in the extent of mismatch of coefficients of thermal expansion between the different components in the assembly. |
doi_str_mv | 10.1109/TPEL.2014.2357334 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1647417603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6895288</ieee_id><sourcerecordid>3565309831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c369t-730a2732f28961f8cbca7f32b0408113dcce2d0cb6a621dea2737f4e22b529cb3</originalsourceid><addsrcrecordid>eNpd0E1LAzEQBuAgCtaPHyBeAl68bM0k-5E92lo_oKJYxeOSzc62KeluTbJI_71bWzx4GgaedxheQi6ADQFYfvP-OpkOOYN4yEWSCREfkAHkMUQMWHZIBkzKJJJ5Lo7JifdL1suEwYCYUWdsiExD39AaVRprwobeoTfzhrY1fTTzhd3Qpybg3KmAFZ211lTRLPQLfW2_0dHZtwl6gZ5-mrCgzxiUpaNutf5NOd02Dergz8hRrazH8_08JR_3k_fxYzR9eXga304jLdI8RJlgimeC11zmKdRSl1plteAli5kEEJXWyCumy1SlHCrc4qyOkfMy4bkuxSm53t1du_arQx-KlfEarVUNtp0vIE0gZpwlaU-v_tFl27mm_65XcRZDljLRK9gp7VrvHdbF2pmVcpsCWLEtv9iWX2zLL_bl95nLXcYg4p9PZZ5wKcUPJ42AFg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647417603</pqid></control><display><type>article</type><title>Built-in Reliability Design of Highly Integrated Solid-State Power Switches With Metal Bump Interconnects</title><source>IEEE</source><creator>Jianfeng Li ; Castellazzi, Alberto ; Tianxiang Dai ; Corfield, Martin ; Solomon, Adane Kassa ; Johnson, Christopher Mark</creator><creatorcontrib>Jianfeng Li ; Castellazzi, Alberto ; Tianxiang Dai ; Corfield, Martin ; Solomon, Adane Kassa ; Johnson, Christopher Mark</creatorcontrib><description>A stacked substrate-chip-bump-chip-substrate assembly has been demonstrated in the construction of power switch modules with high power density and good electrical performance. In this paper, special effort has been devoted to material selection and geometric shape of the bumps in the design for improving the thermomechanical reliability of a highly integrated bidirectional switch. Results from 3-D finite-element simulation indicate that for all design cases the maximum von Mises stresses and creep strain accumulations occur in the solder joints used to join bumps on IGBTs during a realistic mission profile, but occur in the solder joints used to join bumps on DBC substrates during accelerated thermal cycling. The results from both the simulation and the accelerated thermal cycling experiments reveal that selection of Cu/Mo/Cu composite brick bumps in the stacked assembly can significantly improve the thermomechanical reliability of both the solder joints and the DBC substrates when compared to Cu cylinder bumps and Cu hollow cylinder bumps reported in previous work. Such results can be attributed to the effective reduction in the extent of mismatch of coefficients of thermal expansion between the different components in the assembly.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2014.2357334</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Assembly ; Copper ; Cylinders ; Electric power generation ; Electrical equipment ; Experiments ; Finite element analysis ; Insulated gate bipolar transistors ; Reliability ; Simulation ; Soldering ; Solders ; Strain ; Substrates ; Switches ; Switching ; Thermal cycling ; Thermomechanical processes</subject><ispartof>IEEE transactions on power electronics, 2015-05, Vol.30 (5), p.2587-2600</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c369t-730a2732f28961f8cbca7f32b0408113dcce2d0cb6a621dea2737f4e22b529cb3</citedby><cites>FETCH-LOGICAL-c369t-730a2732f28961f8cbca7f32b0408113dcce2d0cb6a621dea2737f4e22b529cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6895288$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids></links><search><creatorcontrib>Jianfeng Li</creatorcontrib><creatorcontrib>Castellazzi, Alberto</creatorcontrib><creatorcontrib>Tianxiang Dai</creatorcontrib><creatorcontrib>Corfield, Martin</creatorcontrib><creatorcontrib>Solomon, Adane Kassa</creatorcontrib><creatorcontrib>Johnson, Christopher Mark</creatorcontrib><title>Built-in Reliability Design of Highly Integrated Solid-State Power Switches With Metal Bump Interconnects</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>A stacked substrate-chip-bump-chip-substrate assembly has been demonstrated in the construction of power switch modules with high power density and good electrical performance. In this paper, special effort has been devoted to material selection and geometric shape of the bumps in the design for improving the thermomechanical reliability of a highly integrated bidirectional switch. Results from 3-D finite-element simulation indicate that for all design cases the maximum von Mises stresses and creep strain accumulations occur in the solder joints used to join bumps on IGBTs during a realistic mission profile, but occur in the solder joints used to join bumps on DBC substrates during accelerated thermal cycling. The results from both the simulation and the accelerated thermal cycling experiments reveal that selection of Cu/Mo/Cu composite brick bumps in the stacked assembly can significantly improve the thermomechanical reliability of both the solder joints and the DBC substrates when compared to Cu cylinder bumps and Cu hollow cylinder bumps reported in previous work. Such results can be attributed to the effective reduction in the extent of mismatch of coefficients of thermal expansion between the different components in the assembly.</description><subject>Assembly</subject><subject>Copper</subject><subject>Cylinders</subject><subject>Electric power generation</subject><subject>Electrical equipment</subject><subject>Experiments</subject><subject>Finite element analysis</subject><subject>Insulated gate bipolar transistors</subject><subject>Reliability</subject><subject>Simulation</subject><subject>Soldering</subject><subject>Solders</subject><subject>Strain</subject><subject>Substrates</subject><subject>Switches</subject><subject>Switching</subject><subject>Thermal cycling</subject><subject>Thermomechanical processes</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpd0E1LAzEQBuAgCtaPHyBeAl68bM0k-5E92lo_oKJYxeOSzc62KeluTbJI_71bWzx4GgaedxheQi6ADQFYfvP-OpkOOYN4yEWSCREfkAHkMUQMWHZIBkzKJJJ5Lo7JifdL1suEwYCYUWdsiExD39AaVRprwobeoTfzhrY1fTTzhd3Qpybg3KmAFZ211lTRLPQLfW2_0dHZtwl6gZ5-mrCgzxiUpaNutf5NOd02Dergz8hRrazH8_08JR_3k_fxYzR9eXga304jLdI8RJlgimeC11zmKdRSl1plteAli5kEEJXWyCumy1SlHCrc4qyOkfMy4bkuxSm53t1du_arQx-KlfEarVUNtp0vIE0gZpwlaU-v_tFl27mm_65XcRZDljLRK9gp7VrvHdbF2pmVcpsCWLEtv9iWX2zLL_bl95nLXcYg4p9PZZ5wKcUPJ42AFg</recordid><startdate>201505</startdate><enddate>201505</enddate><creator>Jianfeng Li</creator><creator>Castellazzi, Alberto</creator><creator>Tianxiang Dai</creator><creator>Corfield, Martin</creator><creator>Solomon, Adane Kassa</creator><creator>Johnson, Christopher Mark</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>201505</creationdate><title>Built-in Reliability Design of Highly Integrated Solid-State Power Switches With Metal Bump Interconnects</title><author>Jianfeng Li ; Castellazzi, Alberto ; Tianxiang Dai ; Corfield, Martin ; Solomon, Adane Kassa ; Johnson, Christopher Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c369t-730a2732f28961f8cbca7f32b0408113dcce2d0cb6a621dea2737f4e22b529cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Assembly</topic><topic>Copper</topic><topic>Cylinders</topic><topic>Electric power generation</topic><topic>Electrical equipment</topic><topic>Experiments</topic><topic>Finite element analysis</topic><topic>Insulated gate bipolar transistors</topic><topic>Reliability</topic><topic>Simulation</topic><topic>Soldering</topic><topic>Solders</topic><topic>Strain</topic><topic>Substrates</topic><topic>Switches</topic><topic>Switching</topic><topic>Thermal cycling</topic><topic>Thermomechanical processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jianfeng Li</creatorcontrib><creatorcontrib>Castellazzi, Alberto</creatorcontrib><creatorcontrib>Tianxiang Dai</creatorcontrib><creatorcontrib>Corfield, Martin</creatorcontrib><creatorcontrib>Solomon, Adane Kassa</creatorcontrib><creatorcontrib>Johnson, Christopher Mark</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jianfeng Li</au><au>Castellazzi, Alberto</au><au>Tianxiang Dai</au><au>Corfield, Martin</au><au>Solomon, Adane Kassa</au><au>Johnson, Christopher Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Built-in Reliability Design of Highly Integrated Solid-State Power Switches With Metal Bump Interconnects</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2015-05</date><risdate>2015</risdate><volume>30</volume><issue>5</issue><spage>2587</spage><epage>2600</epage><pages>2587-2600</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>A stacked substrate-chip-bump-chip-substrate assembly has been demonstrated in the construction of power switch modules with high power density and good electrical performance. In this paper, special effort has been devoted to material selection and geometric shape of the bumps in the design for improving the thermomechanical reliability of a highly integrated bidirectional switch. Results from 3-D finite-element simulation indicate that for all design cases the maximum von Mises stresses and creep strain accumulations occur in the solder joints used to join bumps on IGBTs during a realistic mission profile, but occur in the solder joints used to join bumps on DBC substrates during accelerated thermal cycling. The results from both the simulation and the accelerated thermal cycling experiments reveal that selection of Cu/Mo/Cu composite brick bumps in the stacked assembly can significantly improve the thermomechanical reliability of both the solder joints and the DBC substrates when compared to Cu cylinder bumps and Cu hollow cylinder bumps reported in previous work. Such results can be attributed to the effective reduction in the extent of mismatch of coefficients of thermal expansion between the different components in the assembly.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2014.2357334</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2015-05, Vol.30 (5), p.2587-2600 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_proquest_journals_1647417603 |
source | IEEE |
subjects | Assembly Copper Cylinders Electric power generation Electrical equipment Experiments Finite element analysis Insulated gate bipolar transistors Reliability Simulation Soldering Solders Strain Substrates Switches Switching Thermal cycling Thermomechanical processes |
title | Built-in Reliability Design of Highly Integrated Solid-State Power Switches With Metal Bump Interconnects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A16%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Built-in%20Reliability%20Design%20of%20Highly%20Integrated%20Solid-State%20Power%20Switches%20With%20Metal%20Bump%20Interconnects&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Jianfeng%20Li&rft.date=2015-05&rft.volume=30&rft.issue=5&rft.spage=2587&rft.epage=2600&rft.pages=2587-2600&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2014.2357334&rft_dat=%3Cproquest_cross%3E3565309831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1647417603&rft_id=info:pmid/&rft_ieee_id=6895288&rfr_iscdi=true |