Passivity of Switched Recurrent Neural Networks With Time-Varying Delays

This paper is concerned with the passivity analysis for switched neural networks subject to stochastic disturbances and time-varying delays. First, using the multiple Lyapunov functions method, a state-dependent switching law is designed to present a stochastic passivity condition. Second, a hystere...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2015-02, Vol.26 (2), p.357-366
Hauptverfasser: Lian, Jie, Wang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 366
container_issue 2
container_start_page 357
container_title IEEE transaction on neural networks and learning systems
container_volume 26
creator Lian, Jie
Wang, Jun
description This paper is concerned with the passivity analysis for switched neural networks subject to stochastic disturbances and time-varying delays. First, using the multiple Lyapunov functions method, a state-dependent switching law is designed to present a stochastic passivity condition. Second, a hysteresis switching law involving both the current state and the previous value of the switching signal are presented to avoid chattering resulted from the state-dependent switching. Third, based on the average dwell-time approach, a class of switching signals is determined to guarantee the switched neural network stochastically passive. Finally, three numerical examples are provided to illustrate the characteristics of three proposed switching laws.
doi_str_mv 10.1109/TNNLS.2014.2379920
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1647300170</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7001700</ieee_id><sourcerecordid>1709183824</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-b1ffde9a2a7d4801b3dd5658992e80cd51a229029043ea3b8e8a0ef2f4477c43</originalsourceid><addsrcrecordid>eNqNkUtPAjEQgBujEYL8AU3MJl68LPa12_Zo8IEJQSNEvW3K7qwUFxbbXQn_3vKQgyeaJtOk30w78yF0TnCHEKxuRoNBf9ihmPAOZUIpio9Qk5KYhpRJebw_i48Gajs3xX7FOIq5OkUNGkUijoRoot6Lds78mGoVlHkwXJoqnUAWvEJaWwvzKhhAbXXhQ7Us7ZcL3k01CUZmBuGbtisz_wzuoNArd4ZOcl04aO9iC40e7kfdXth_fnzq3vbDlEtRhWOS5xkoTbXIuMRkzLIsiiPpGwCJ0ywimlKF_eYMNBtLkBpDTnPOhUg5a6HrbdmFLb9rcFUyMy6FotBzKGuXEIEVkUzSA9A4VlKRmByCRpQpPzDl0at_6LSs7dy37CkuGMb-C56iWyq1pXMW8mRhzcwPLCE4WftLNv6Stb9k588nXe5K1-MZZPuUP1seuNgCBgD212LzJGa_P_mcjw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647300170</pqid></control><display><type>article</type><title>Passivity of Switched Recurrent Neural Networks With Time-Varying Delays</title><source>IEEE Electronic Library (IEL)</source><creator>Lian, Jie ; Wang, Jun</creator><creatorcontrib>Lian, Jie ; Wang, Jun</creatorcontrib><description>This paper is concerned with the passivity analysis for switched neural networks subject to stochastic disturbances and time-varying delays. First, using the multiple Lyapunov functions method, a state-dependent switching law is designed to present a stochastic passivity condition. Second, a hysteresis switching law involving both the current state and the previous value of the switching signal are presented to avoid chattering resulted from the state-dependent switching. Third, based on the average dwell-time approach, a class of switching signals is determined to guarantee the switched neural network stochastically passive. Finally, three numerical examples are provided to illustrate the characteristics of three proposed switching laws.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2014.2379920</identifier><identifier>PMID: 25576577</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Artificial Intelligence ; Average dwell time ; Biological neural networks ; Computer Simulation ; Delay ; Delays ; Hysteresis ; hysteresis switching law ; Law ; Lyapunov functions ; Lyapunov methods ; Mathematical Computing ; Neural networks ; Neural Networks (Computer) ; Passivity ; Recurrent neural networks ; Stochasticity ; switched neural networks ; Switches ; Switching ; Symmetric matrices ; Time Factors ; Vibration</subject><ispartof>IEEE transaction on neural networks and learning systems, 2015-02, Vol.26 (2), p.357-366</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Feb 2015</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-b1ffde9a2a7d4801b3dd5658992e80cd51a229029043ea3b8e8a0ef2f4477c43</citedby><cites>FETCH-LOGICAL-c487t-b1ffde9a2a7d4801b3dd5658992e80cd51a229029043ea3b8e8a0ef2f4477c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7001700$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7001700$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25576577$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lian, Jie</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><title>Passivity of Switched Recurrent Neural Networks With Time-Varying Delays</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>This paper is concerned with the passivity analysis for switched neural networks subject to stochastic disturbances and time-varying delays. First, using the multiple Lyapunov functions method, a state-dependent switching law is designed to present a stochastic passivity condition. Second, a hysteresis switching law involving both the current state and the previous value of the switching signal are presented to avoid chattering resulted from the state-dependent switching. Third, based on the average dwell-time approach, a class of switching signals is determined to guarantee the switched neural network stochastically passive. Finally, three numerical examples are provided to illustrate the characteristics of three proposed switching laws.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Average dwell time</subject><subject>Biological neural networks</subject><subject>Computer Simulation</subject><subject>Delay</subject><subject>Delays</subject><subject>Hysteresis</subject><subject>hysteresis switching law</subject><subject>Law</subject><subject>Lyapunov functions</subject><subject>Lyapunov methods</subject><subject>Mathematical Computing</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Passivity</subject><subject>Recurrent neural networks</subject><subject>Stochasticity</subject><subject>switched neural networks</subject><subject>Switches</subject><subject>Switching</subject><subject>Symmetric matrices</subject><subject>Time Factors</subject><subject>Vibration</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUtPAjEQgBujEYL8AU3MJl68LPa12_Zo8IEJQSNEvW3K7qwUFxbbXQn_3vKQgyeaJtOk30w78yF0TnCHEKxuRoNBf9ihmPAOZUIpio9Qk5KYhpRJebw_i48Gajs3xX7FOIq5OkUNGkUijoRoot6Lds78mGoVlHkwXJoqnUAWvEJaWwvzKhhAbXXhQ7Us7ZcL3k01CUZmBuGbtisz_wzuoNArd4ZOcl04aO9iC40e7kfdXth_fnzq3vbDlEtRhWOS5xkoTbXIuMRkzLIsiiPpGwCJ0ywimlKF_eYMNBtLkBpDTnPOhUg5a6HrbdmFLb9rcFUyMy6FotBzKGuXEIEVkUzSA9A4VlKRmByCRpQpPzDl0at_6LSs7dy37CkuGMb-C56iWyq1pXMW8mRhzcwPLCE4WftLNv6Stb9k588nXe5K1-MZZPuUP1seuNgCBgD212LzJGa_P_mcjw</recordid><startdate>20150201</startdate><enddate>20150201</enddate><creator>Lian, Jie</creator><creator>Wang, Jun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20150201</creationdate><title>Passivity of Switched Recurrent Neural Networks With Time-Varying Delays</title><author>Lian, Jie ; Wang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-b1ffde9a2a7d4801b3dd5658992e80cd51a229029043ea3b8e8a0ef2f4477c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Average dwell time</topic><topic>Biological neural networks</topic><topic>Computer Simulation</topic><topic>Delay</topic><topic>Delays</topic><topic>Hysteresis</topic><topic>hysteresis switching law</topic><topic>Law</topic><topic>Lyapunov functions</topic><topic>Lyapunov methods</topic><topic>Mathematical Computing</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Passivity</topic><topic>Recurrent neural networks</topic><topic>Stochasticity</topic><topic>switched neural networks</topic><topic>Switches</topic><topic>Switching</topic><topic>Symmetric matrices</topic><topic>Time Factors</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Lian, Jie</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lian, Jie</au><au>Wang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passivity of Switched Recurrent Neural Networks With Time-Varying Delays</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2015-02-01</date><risdate>2015</risdate><volume>26</volume><issue>2</issue><spage>357</spage><epage>366</epage><pages>357-366</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>This paper is concerned with the passivity analysis for switched neural networks subject to stochastic disturbances and time-varying delays. First, using the multiple Lyapunov functions method, a state-dependent switching law is designed to present a stochastic passivity condition. Second, a hysteresis switching law involving both the current state and the previous value of the switching signal are presented to avoid chattering resulted from the state-dependent switching. Third, based on the average dwell-time approach, a class of switching signals is determined to guarantee the switched neural network stochastically passive. Finally, three numerical examples are provided to illustrate the characteristics of three proposed switching laws.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>25576577</pmid><doi>10.1109/TNNLS.2014.2379920</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2015-02, Vol.26 (2), p.357-366
issn 2162-237X
2162-2388
language eng
recordid cdi_proquest_journals_1647300170
source IEEE Electronic Library (IEL)
subjects Algorithms
Artificial Intelligence
Average dwell time
Biological neural networks
Computer Simulation
Delay
Delays
Hysteresis
hysteresis switching law
Law
Lyapunov functions
Lyapunov methods
Mathematical Computing
Neural networks
Neural Networks (Computer)
Passivity
Recurrent neural networks
Stochasticity
switched neural networks
Switches
Switching
Symmetric matrices
Time Factors
Vibration
title Passivity of Switched Recurrent Neural Networks With Time-Varying Delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T02%3A17%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passivity%20of%20Switched%20Recurrent%20Neural%20Networks%20With%20Time-Varying%20Delays&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Lian,%20Jie&rft.date=2015-02-01&rft.volume=26&rft.issue=2&rft.spage=357&rft.epage=366&rft.pages=357-366&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2014.2379920&rft_dat=%3Cproquest_RIE%3E1709183824%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1647300170&rft_id=info:pmid/25576577&rft_ieee_id=7001700&rfr_iscdi=true