Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three- dimensional graphene

We report on the ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles (3--4 nm) embedded in three-dimensional (3D) graphene (SnO2@3DG). SnO2@3DG was fabricated by hydrothermal assembly with ice-templated 3DG and a tin source. The structure and morphology analyses showed that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2015-01, Vol.8 (1), p.184-192
Hauptverfasser: Pei, Longkai, Jin, Qi, Zhu, Zhiqiang, Zhao, Qing, Liang, Jing, Chen, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 192
container_issue 1
container_start_page 184
container_title Nano research
container_volume 8
creator Pei, Longkai
Jin, Qi
Zhu, Zhiqiang
Zhao, Qing
Liang, Jing
Chen, Jun
description We report on the ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles (3--4 nm) embedded in three-dimensional (3D) graphene (SnO2@3DG). SnO2@3DG was fabricated by hydrothermal assembly with ice-templated 3DG and a tin source. The structure and morphology analyses showed that 3DG has an interconnected porous architecture with a large pore volume of 0.578 cm^3·g^-1 and a high surface area of 470.5 m^2·g^-1. In comparison, SnO2@3DG exhibited a pore volume of 0.321 cmg.g^-1 and a surface area of 237.7 m^2·g^-1 with a homogeneous distribution of ultrasmall SnO2 nanoparticles in a 3DG network. SnO2@3DG showed a discharge capacity of 1,155 mA-h·g^-1 in the initial cycle, a reversible capacity of 432 mA·h·g^-1 after 200 cycles at 100 mA·g^-1 (with capacity retention of 85.7% relative to that in the second cycle), and a discharge capacity of 210 mAh·g^-1 at a high rate of 800 mA·g^-1 This is due to the high distribution of SnO2 nanoparticles in the 3DG network and the enhanced facilitation of electron/ion transport in the electrode.
doi_str_mv 10.1007/s12274-014-0609-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1646989215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665085603</cqvip_id><sourcerecordid>3563480421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-5d1a8b1fc97d018f006dbeaffa1a45e3b2860d69be7b3394f805745b77a525113</originalsourceid><addsrcrecordid>eNp9kEtLxTAQhYso-PwB7oKuq5m0SduliC8QXKjrMG2m9_bSJjVJF_57c7kqrhwYZhbnOzOcLDsHfgWcV9cBhKjKnENqxZtc7WVH0DR1zlPt_-wgysPsOIQN50pAWR9ly1NHeaRpHjGSYbOnGT3GwVmG1rDgzLBMLETncUXM9WwZo8cw4TiyV_simEXrEhKHbqTAaGrJmGQ0WBbXnihnZpjIhmSII1t5nNdk6TQ76HEMdPY9T7L3-7u328f8-eXh6fbmOe-KSsVcGsC6hb5rKsOh7tPXpiXsewQsJRWtqBU3qmmpaouiKfuay6qUbVWhFBKgOMkud76zdx8Lhag3bvHpk6BBlaqpGwEyqWCn6rwLwVOvZz9M6D81cL1NV-_S1SldvU1Xq8SIHROS1q7I_3H-B7r4PrR2dvWRuN9LSkleS8WL4gvgc4m1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1646989215</pqid></control><display><type>article</type><title>Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three- dimensional graphene</title><source>SpringerNature Journals</source><creator>Pei, Longkai ; Jin, Qi ; Zhu, Zhiqiang ; Zhao, Qing ; Liang, Jing ; Chen, Jun</creator><creatorcontrib>Pei, Longkai ; Jin, Qi ; Zhu, Zhiqiang ; Zhao, Qing ; Liang, Jing ; Chen, Jun</creatorcontrib><description>We report on the ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles (3--4 nm) embedded in three-dimensional (3D) graphene (SnO2@3DG). SnO2@3DG was fabricated by hydrothermal assembly with ice-templated 3DG and a tin source. The structure and morphology analyses showed that 3DG has an interconnected porous architecture with a large pore volume of 0.578 cm^3·g^-1 and a high surface area of 470.5 m^2·g^-1. In comparison, SnO2@3DG exhibited a pore volume of 0.321 cmg.g^-1 and a surface area of 237.7 m^2·g^-1 with a homogeneous distribution of ultrasmall SnO2 nanoparticles in a 3DG network. SnO2@3DG showed a discharge capacity of 1,155 mA-h·g^-1 in the initial cycle, a reversible capacity of 432 mA·h·g^-1 after 200 cycles at 100 mA·g^-1 (with capacity retention of 85.7% relative to that in the second cycle), and a discharge capacity of 210 mAh·g^-1 at a high rate of 800 mA·g^-1 This is due to the high distribution of SnO2 nanoparticles in the 3DG network and the enhanced facilitation of electron/ion transport in the electrode.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-014-0609-6</identifier><language>eng</language><publisher>Heidelberg: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Batteries ; Biomedicine ; Biotechnology ; Chemical vapor deposition ; Chemistry and Materials Science ; Condensed Matter Physics ; Graphene ; Ion transport ; Materials Science ; Nanoparticles ; Nanotechnology ; Research Article ; Scanning electron microscopy ; SnO2 ; Sodium ; Surface area ; 三维 ; 二氧化锡 ; 嵌入 ; 模板制备 ; 石墨 ; 纳米粒子 ; 超小型</subject><ispartof>Nano research, 2015-01, Vol.8 (1), p.184-192</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-5d1a8b1fc97d018f006dbeaffa1a45e3b2860d69be7b3394f805745b77a525113</citedby><cites>FETCH-LOGICAL-c376t-5d1a8b1fc97d018f006dbeaffa1a45e3b2860d69be7b3394f805745b77a525113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-014-0609-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-014-0609-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Pei, Longkai</creatorcontrib><creatorcontrib>Jin, Qi</creatorcontrib><creatorcontrib>Zhu, Zhiqiang</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><title>Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three- dimensional graphene</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>We report on the ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles (3--4 nm) embedded in three-dimensional (3D) graphene (SnO2@3DG). SnO2@3DG was fabricated by hydrothermal assembly with ice-templated 3DG and a tin source. The structure and morphology analyses showed that 3DG has an interconnected porous architecture with a large pore volume of 0.578 cm^3·g^-1 and a high surface area of 470.5 m^2·g^-1. In comparison, SnO2@3DG exhibited a pore volume of 0.321 cmg.g^-1 and a surface area of 237.7 m^2·g^-1 with a homogeneous distribution of ultrasmall SnO2 nanoparticles in a 3DG network. SnO2@3DG showed a discharge capacity of 1,155 mA-h·g^-1 in the initial cycle, a reversible capacity of 432 mA·h·g^-1 after 200 cycles at 100 mA·g^-1 (with capacity retention of 85.7% relative to that in the second cycle), and a discharge capacity of 210 mAh·g^-1 at a high rate of 800 mA·g^-1 This is due to the high distribution of SnO2 nanoparticles in the 3DG network and the enhanced facilitation of electron/ion transport in the electrode.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Batteries</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Graphene</subject><subject>Ion transport</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Research Article</subject><subject>Scanning electron microscopy</subject><subject>SnO2</subject><subject>Sodium</subject><subject>Surface area</subject><subject>三维</subject><subject>二氧化锡</subject><subject>嵌入</subject><subject>模板制备</subject><subject>石墨</subject><subject>纳米粒子</subject><subject>超小型</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxTAQhYso-PwB7oKuq5m0SduliC8QXKjrMG2m9_bSJjVJF_57c7kqrhwYZhbnOzOcLDsHfgWcV9cBhKjKnENqxZtc7WVH0DR1zlPt_-wgysPsOIQN50pAWR9ly1NHeaRpHjGSYbOnGT3GwVmG1rDgzLBMLETncUXM9WwZo8cw4TiyV_simEXrEhKHbqTAaGrJmGQ0WBbXnihnZpjIhmSII1t5nNdk6TQ76HEMdPY9T7L3-7u328f8-eXh6fbmOe-KSsVcGsC6hb5rKsOh7tPXpiXsewQsJRWtqBU3qmmpaouiKfuay6qUbVWhFBKgOMkud76zdx8Lhag3bvHpk6BBlaqpGwEyqWCn6rwLwVOvZz9M6D81cL1NV-_S1SldvU1Xq8SIHROS1q7I_3H-B7r4PrR2dvWRuN9LSkleS8WL4gvgc4m1</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Pei, Longkai</creator><creator>Jin, Qi</creator><creator>Zhu, Zhiqiang</creator><creator>Zhao, Qing</creator><creator>Liang, Jing</creator><creator>Chen, Jun</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20150101</creationdate><title>Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three- dimensional graphene</title><author>Pei, Longkai ; Jin, Qi ; Zhu, Zhiqiang ; Zhao, Qing ; Liang, Jing ; Chen, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-5d1a8b1fc97d018f006dbeaffa1a45e3b2860d69be7b3394f805745b77a525113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Batteries</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Graphene</topic><topic>Ion transport</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Research Article</topic><topic>Scanning electron microscopy</topic><topic>SnO2</topic><topic>Sodium</topic><topic>Surface area</topic><topic>三维</topic><topic>二氧化锡</topic><topic>嵌入</topic><topic>模板制备</topic><topic>石墨</topic><topic>纳米粒子</topic><topic>超小型</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Longkai</creatorcontrib><creatorcontrib>Jin, Qi</creatorcontrib><creatorcontrib>Zhu, Zhiqiang</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pei, Longkai</au><au>Jin, Qi</au><au>Zhu, Zhiqiang</au><au>Zhao, Qing</au><au>Liang, Jing</au><au>Chen, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three- dimensional graphene</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>8</volume><issue>1</issue><spage>184</spage><epage>192</epage><pages>184-192</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>We report on the ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles (3--4 nm) embedded in three-dimensional (3D) graphene (SnO2@3DG). SnO2@3DG was fabricated by hydrothermal assembly with ice-templated 3DG and a tin source. The structure and morphology analyses showed that 3DG has an interconnected porous architecture with a large pore volume of 0.578 cm^3·g^-1 and a high surface area of 470.5 m^2·g^-1. In comparison, SnO2@3DG exhibited a pore volume of 0.321 cmg.g^-1 and a surface area of 237.7 m^2·g^-1 with a homogeneous distribution of ultrasmall SnO2 nanoparticles in a 3DG network. SnO2@3DG showed a discharge capacity of 1,155 mA-h·g^-1 in the initial cycle, a reversible capacity of 432 mA·h·g^-1 after 200 cycles at 100 mA·g^-1 (with capacity retention of 85.7% relative to that in the second cycle), and a discharge capacity of 210 mAh·g^-1 at a high rate of 800 mA·g^-1 This is due to the high distribution of SnO2 nanoparticles in the 3DG network and the enhanced facilitation of electron/ion transport in the electrode.</abstract><cop>Heidelberg</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-014-0609-6</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2015-01, Vol.8 (1), p.184-192
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_journals_1646989215
source SpringerNature Journals
subjects Atomic/Molecular Structure and Spectra
Batteries
Biomedicine
Biotechnology
Chemical vapor deposition
Chemistry and Materials Science
Condensed Matter Physics
Graphene
Ion transport
Materials Science
Nanoparticles
Nanotechnology
Research Article
Scanning electron microscopy
SnO2
Sodium
Surface area
三维
二氧化锡
嵌入
模板制备
石墨
纳米粒子
超小型
title Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three- dimensional graphene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ice-templated%20preparation%20and%20sodium%20storage%20of%20ultrasmall%20SnO2%20nanoparticles%20embedded%20in%20three-%20dimensional%20graphene&rft.jtitle=Nano%20research&rft.au=Pei,%20Longkai&rft.date=2015-01-01&rft.volume=8&rft.issue=1&rft.spage=184&rft.epage=192&rft.pages=184-192&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-014-0609-6&rft_dat=%3Cproquest_cross%3E3563480421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1646989215&rft_id=info:pmid/&rft_cqvip_id=665085603&rfr_iscdi=true