Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three- dimensional graphene
We report on the ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles (3--4 nm) embedded in three-dimensional (3D) graphene (SnO2@3DG). SnO2@3DG was fabricated by hydrothermal assembly with ice-templated 3DG and a tin source. The structure and morphology analyses showed that...
Gespeichert in:
Veröffentlicht in: | Nano research 2015-01, Vol.8 (1), p.184-192 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 192 |
---|---|
container_issue | 1 |
container_start_page | 184 |
container_title | Nano research |
container_volume | 8 |
creator | Pei, Longkai Jin, Qi Zhu, Zhiqiang Zhao, Qing Liang, Jing Chen, Jun |
description | We report on the ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles (3--4 nm) embedded in three-dimensional (3D) graphene (SnO2@3DG). SnO2@3DG was fabricated by hydrothermal assembly with ice-templated 3DG and a tin source. The structure and morphology analyses showed that 3DG has an interconnected porous architecture with a large pore volume of 0.578 cm^3·g^-1 and a high surface area of 470.5 m^2·g^-1. In comparison, SnO2@3DG exhibited a pore volume of 0.321 cmg.g^-1 and a surface area of 237.7 m^2·g^-1 with a homogeneous distribution of ultrasmall SnO2 nanoparticles in a 3DG network. SnO2@3DG showed a discharge capacity of 1,155 mA-h·g^-1 in the initial cycle, a reversible capacity of 432 mA·h·g^-1 after 200 cycles at 100 mA·g^-1 (with capacity retention of 85.7% relative to that in the second cycle), and a discharge capacity of 210 mAh·g^-1 at a high rate of 800 mA·g^-1 This is due to the high distribution of SnO2 nanoparticles in the 3DG network and the enhanced facilitation of electron/ion transport in the electrode. |
doi_str_mv | 10.1007/s12274-014-0609-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1646989215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665085603</cqvip_id><sourcerecordid>3563480421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c376t-5d1a8b1fc97d018f006dbeaffa1a45e3b2860d69be7b3394f805745b77a525113</originalsourceid><addsrcrecordid>eNp9kEtLxTAQhYso-PwB7oKuq5m0SduliC8QXKjrMG2m9_bSJjVJF_57c7kqrhwYZhbnOzOcLDsHfgWcV9cBhKjKnENqxZtc7WVH0DR1zlPt_-wgysPsOIQN50pAWR9ly1NHeaRpHjGSYbOnGT3GwVmG1rDgzLBMLETncUXM9WwZo8cw4TiyV_simEXrEhKHbqTAaGrJmGQ0WBbXnihnZpjIhmSII1t5nNdk6TQ76HEMdPY9T7L3-7u328f8-eXh6fbmOe-KSsVcGsC6hb5rKsOh7tPXpiXsewQsJRWtqBU3qmmpaouiKfuay6qUbVWhFBKgOMkud76zdx8Lhag3bvHpk6BBlaqpGwEyqWCn6rwLwVOvZz9M6D81cL1NV-_S1SldvU1Xq8SIHROS1q7I_3H-B7r4PrR2dvWRuN9LSkleS8WL4gvgc4m1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1646989215</pqid></control><display><type>article</type><title>Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three- dimensional graphene</title><source>SpringerNature Journals</source><creator>Pei, Longkai ; Jin, Qi ; Zhu, Zhiqiang ; Zhao, Qing ; Liang, Jing ; Chen, Jun</creator><creatorcontrib>Pei, Longkai ; Jin, Qi ; Zhu, Zhiqiang ; Zhao, Qing ; Liang, Jing ; Chen, Jun</creatorcontrib><description>We report on the ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles (3--4 nm) embedded in three-dimensional (3D) graphene (SnO2@3DG). SnO2@3DG was fabricated by hydrothermal assembly with ice-templated 3DG and a tin source. The structure and morphology analyses showed that 3DG has an interconnected porous architecture with a large pore volume of 0.578 cm^3·g^-1 and a high surface area of 470.5 m^2·g^-1. In comparison, SnO2@3DG exhibited a pore volume of 0.321 cmg.g^-1 and a surface area of 237.7 m^2·g^-1 with a homogeneous distribution of ultrasmall SnO2 nanoparticles in a 3DG network. SnO2@3DG showed a discharge capacity of 1,155 mA-h·g^-1 in the initial cycle, a reversible capacity of 432 mA·h·g^-1 after 200 cycles at 100 mA·g^-1 (with capacity retention of 85.7% relative to that in the second cycle), and a discharge capacity of 210 mAh·g^-1 at a high rate of 800 mA·g^-1 This is due to the high distribution of SnO2 nanoparticles in the 3DG network and the enhanced facilitation of electron/ion transport in the electrode.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-014-0609-6</identifier><language>eng</language><publisher>Heidelberg: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Batteries ; Biomedicine ; Biotechnology ; Chemical vapor deposition ; Chemistry and Materials Science ; Condensed Matter Physics ; Graphene ; Ion transport ; Materials Science ; Nanoparticles ; Nanotechnology ; Research Article ; Scanning electron microscopy ; SnO2 ; Sodium ; Surface area ; 三维 ; 二氧化锡 ; 嵌入 ; 模板制备 ; 石墨 ; 纳米粒子 ; 超小型</subject><ispartof>Nano research, 2015-01, Vol.8 (1), p.184-192</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c376t-5d1a8b1fc97d018f006dbeaffa1a45e3b2860d69be7b3394f805745b77a525113</citedby><cites>FETCH-LOGICAL-c376t-5d1a8b1fc97d018f006dbeaffa1a45e3b2860d69be7b3394f805745b77a525113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-014-0609-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-014-0609-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Pei, Longkai</creatorcontrib><creatorcontrib>Jin, Qi</creatorcontrib><creatorcontrib>Zhu, Zhiqiang</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><title>Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three- dimensional graphene</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>We report on the ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles (3--4 nm) embedded in three-dimensional (3D) graphene (SnO2@3DG). SnO2@3DG was fabricated by hydrothermal assembly with ice-templated 3DG and a tin source. The structure and morphology analyses showed that 3DG has an interconnected porous architecture with a large pore volume of 0.578 cm^3·g^-1 and a high surface area of 470.5 m^2·g^-1. In comparison, SnO2@3DG exhibited a pore volume of 0.321 cmg.g^-1 and a surface area of 237.7 m^2·g^-1 with a homogeneous distribution of ultrasmall SnO2 nanoparticles in a 3DG network. SnO2@3DG showed a discharge capacity of 1,155 mA-h·g^-1 in the initial cycle, a reversible capacity of 432 mA·h·g^-1 after 200 cycles at 100 mA·g^-1 (with capacity retention of 85.7% relative to that in the second cycle), and a discharge capacity of 210 mAh·g^-1 at a high rate of 800 mA·g^-1 This is due to the high distribution of SnO2 nanoparticles in the 3DG network and the enhanced facilitation of electron/ion transport in the electrode.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Batteries</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemical vapor deposition</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Graphene</subject><subject>Ion transport</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Research Article</subject><subject>Scanning electron microscopy</subject><subject>SnO2</subject><subject>Sodium</subject><subject>Surface area</subject><subject>三维</subject><subject>二氧化锡</subject><subject>嵌入</subject><subject>模板制备</subject><subject>石墨</subject><subject>纳米粒子</subject><subject>超小型</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxTAQhYso-PwB7oKuq5m0SduliC8QXKjrMG2m9_bSJjVJF_57c7kqrhwYZhbnOzOcLDsHfgWcV9cBhKjKnENqxZtc7WVH0DR1zlPt_-wgysPsOIQN50pAWR9ly1NHeaRpHjGSYbOnGT3GwVmG1rDgzLBMLETncUXM9WwZo8cw4TiyV_simEXrEhKHbqTAaGrJmGQ0WBbXnihnZpjIhmSII1t5nNdk6TQ76HEMdPY9T7L3-7u328f8-eXh6fbmOe-KSsVcGsC6hb5rKsOh7tPXpiXsewQsJRWtqBU3qmmpaouiKfuay6qUbVWhFBKgOMkud76zdx8Lhag3bvHpk6BBlaqpGwEyqWCn6rwLwVOvZz9M6D81cL1NV-_S1SldvU1Xq8SIHROS1q7I_3H-B7r4PrR2dvWRuN9LSkleS8WL4gvgc4m1</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Pei, Longkai</creator><creator>Jin, Qi</creator><creator>Zhu, Zhiqiang</creator><creator>Zhao, Qing</creator><creator>Liang, Jing</creator><creator>Chen, Jun</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20150101</creationdate><title>Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three- dimensional graphene</title><author>Pei, Longkai ; Jin, Qi ; Zhu, Zhiqiang ; Zhao, Qing ; Liang, Jing ; Chen, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c376t-5d1a8b1fc97d018f006dbeaffa1a45e3b2860d69be7b3394f805745b77a525113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Batteries</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemical vapor deposition</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Graphene</topic><topic>Ion transport</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Research Article</topic><topic>Scanning electron microscopy</topic><topic>SnO2</topic><topic>Sodium</topic><topic>Surface area</topic><topic>三维</topic><topic>二氧化锡</topic><topic>嵌入</topic><topic>模板制备</topic><topic>石墨</topic><topic>纳米粒子</topic><topic>超小型</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pei, Longkai</creatorcontrib><creatorcontrib>Jin, Qi</creatorcontrib><creatorcontrib>Zhu, Zhiqiang</creatorcontrib><creatorcontrib>Zhao, Qing</creatorcontrib><creatorcontrib>Liang, Jing</creatorcontrib><creatorcontrib>Chen, Jun</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pei, Longkai</au><au>Jin, Qi</au><au>Zhu, Zhiqiang</au><au>Zhao, Qing</au><au>Liang, Jing</au><au>Chen, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three- dimensional graphene</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>8</volume><issue>1</issue><spage>184</spage><epage>192</epage><pages>184-192</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>We report on the ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles (3--4 nm) embedded in three-dimensional (3D) graphene (SnO2@3DG). SnO2@3DG was fabricated by hydrothermal assembly with ice-templated 3DG and a tin source. The structure and morphology analyses showed that 3DG has an interconnected porous architecture with a large pore volume of 0.578 cm^3·g^-1 and a high surface area of 470.5 m^2·g^-1. In comparison, SnO2@3DG exhibited a pore volume of 0.321 cmg.g^-1 and a surface area of 237.7 m^2·g^-1 with a homogeneous distribution of ultrasmall SnO2 nanoparticles in a 3DG network. SnO2@3DG showed a discharge capacity of 1,155 mA-h·g^-1 in the initial cycle, a reversible capacity of 432 mA·h·g^-1 after 200 cycles at 100 mA·g^-1 (with capacity retention of 85.7% relative to that in the second cycle), and a discharge capacity of 210 mAh·g^-1 at a high rate of 800 mA·g^-1 This is due to the high distribution of SnO2 nanoparticles in the 3DG network and the enhanced facilitation of electron/ion transport in the electrode.</abstract><cop>Heidelberg</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-014-0609-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2015-01, Vol.8 (1), p.184-192 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_journals_1646989215 |
source | SpringerNature Journals |
subjects | Atomic/Molecular Structure and Spectra Batteries Biomedicine Biotechnology Chemical vapor deposition Chemistry and Materials Science Condensed Matter Physics Graphene Ion transport Materials Science Nanoparticles Nanotechnology Research Article Scanning electron microscopy SnO2 Sodium Surface area 三维 二氧化锡 嵌入 模板制备 石墨 纳米粒子 超小型 |
title | Ice-templated preparation and sodium storage of ultrasmall SnO2 nanoparticles embedded in three- dimensional graphene |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T04%3A15%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ice-templated%20preparation%20and%20sodium%20storage%20of%20ultrasmall%20SnO2%20nanoparticles%20embedded%20in%20three-%20dimensional%20graphene&rft.jtitle=Nano%20research&rft.au=Pei,%20Longkai&rft.date=2015-01-01&rft.volume=8&rft.issue=1&rft.spage=184&rft.epage=192&rft.pages=184-192&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-014-0609-6&rft_dat=%3Cproquest_cross%3E3563480421%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1646989215&rft_id=info:pmid/&rft_cqvip_id=665085603&rfr_iscdi=true |